4.4 Article

Repetitive Gly-Leu-Lys-Gly-Glu-Asn-Arg-Gly-Asp Peptide Derived from Collagen and Fibronectin for Improving Cell-Scaffold Interaction

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 175, Issue 5, Pages 2489-2500

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12010-014-1388-y

Keywords

Electrospinning; Collagen; Fibronectin; Polycaprolactone

Funding

  1. SUT Research and Development Support Fund

Ask authors/readers for more resources

Suitable scaffolds for tissue engineering should provide a microenvironment for cell dwelling and directing cell behavior that resemble the native environment. Three-dimensional geometry of electrospun scaffolds well supports cell deposition, but they often lack biomacromolecules to induce cell responses. In this work, the repetitive collagen and fibronectin motif (rCF) peptide containing multiple repeats of Gly-Leu-Lys-Gly-Glu-Asn-Arg-Gly-Asp sequence derived from the cell adhesion motifs of collagen and fibronectin was produced as the alternative agent to induce cell-scaffold interaction. The DNA fragment encoding rCF peptide was amplified by a polymerase chain reaction using overlap primers without a DNA template, cloned into a protein expression vector, and expressed as a His-tag fusion peptide in Escherichia coli. The purified rCF peptide possessed cell adhesion activity about 1.5-fold of the commercial RGD peptide. The rCF peptide was grafted onto the electrospun PCL scaffold via RF plasma of Ar/O-2 discharge and acrylic acid treatment. The immobilized rCF peptide significantly increased surface hydrophilicity and enhanced cell proliferation of the electrospun PCL scaffold. These findings suggest the potential application of rCF peptide for improving the biomimetic functions of polymeric scaffolds for tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available