4.6 Article

Novel Pathway for the Degradation of 2-Chloro-4-Nitrobenzoic Acid by Acinetobacter sp Strain RKJ12

Journal

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
Volume 77, Issue 18, Pages 6606-6613

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.00685-11

Keywords

-

Funding

  1. Department of Biotechnology (DBT)
  2. Council of Scientific and Industrial Research (CSIR), India

Ask authors/readers for more resources

The organism Acinetobacter sp. RKJ12 is capable of utilizing 2-chloro-4-nitrobenzoic acid (2C4NBA) as a sole source of carbon, nitrogen, and energy. In the degradation of 2C4NBA by strain RKJ12, various metabolites were isolated and identified by a combination of chromatographic, spectroscopic, and enzymatic activities, revealing a novel assimilation pathway involving both oxidative and reductive catabolic mechanisms. The metabolism of 2C4NBA was initiated by oxidative ortho dehalogenation, leading to the formation of 2-hydroxy4-nitrobenzoic acid (2H4NBA), which subsequently was metabolized into 2,4-dihydroxybenzoic acid (2,4-DHBA) by a mono-oxygenase with the concomitant release of chloride and nitrite ions. Stoichiometric analysis indicated the consumption of 1 mol O(2) per conversion of 2C4NBA to 2,4-DHBA, ruling out the possibility of two oxidative reactions. Experiments with labeled H(2)(18)O and (18)O(2) indicated the involvement of mono-oxygenase- catalyzed initial hydrolytic dechlorination and oxidative denitration mechanisms. The further degradation of 2,4-DHBA then proceeds via reductive dehydroxylation involving the formation of salicylic acid. In the lower pathway, the organism transformed salicylic acid into catechol, which was mineralized by the ortho ring cleavage catechol-1,2-dioxygenase to cis, cis-muconic acid, ultimately forming tricarboxylic acid cycle intermediates. Furthermore, the studies carried out on a 2C4NBA(-) derivative and a 2C4NBA(+) transconjugant demonstrated that the catabolic genes for the 2C4NBA degradation pathway possibly reside on the similar to 55-kb transmissible plasmid present in RKJ12.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available