Journal
ANTIVIRAL RESEARCH
Volume 82, Issue 3, Pages 148-156Publisher
ELSEVIER SCIENCE BV
DOI: 10.1016/j.antiviral.2009.02.200
Keywords
siRNA; VHSV; Polymerase; Fish cell lines; EPC; Hairpin
Categories
Funding
- Spanish Ministerio de Innovacion y Ciencia [AGL2005-00339/ACU, AGL2008-03519-CO4, CSD00C07-00002]
- Danish Research Council for Technology and Production Sciences [26-03-0059, 274-05-0585]
- Lundbeck Foundation [52/03]
- European Commission [FP6007103]
Ask authors/readers for more resources
Previous studies have indicated that low transfection efficiency can be a major problem when gene inhibition by the use of small interfering RNAs (siRNAs) is attempted in fish cells. This may especially be true when targeting genes of viruses which are fast replicating and which can still infect cells that have not been transfected with the antiviral siRNAs. To increase the amount of antiviral siRNAs per cell a different strategy than transfection was taken here. Thus, we describe carp epithelioma papulosum cyprinid (EPC) cell clones expressing siRNAs designed to target the L polymerase gene of the viral hemorrhagic septicemia virus (VHSV), a rhabdovirus affecting fish. Eight siRNA sequences were first designed, synthesized and screened for inhibition of in vitro VHSV infectivity. Small hairpin (sh) DNAs corresponding to three selected siRNAs were then cloned into pRNA-CMV3.1/puro plasmids, transfected into EPC cells and transformed clones were obtained by puromycin selection. Sequence-specific interference with VHSV could only be observed with EPC clones transformed with a mixture of the three shDNAs, rather than with those clones obtained with individual sh DNAs. However, interference was not specific for VHSV as infection with an heterologous fish rhabdovirus, was also reduced to a similar extent. It was shown that this reduction was not due to an Mx response in the transformed cell clones. Here, we discuss some of the possible reasons for such data and future work directions. EPC clones stably expressing rhabdoviral specific siRNA sequences could be a strategy to further investigate the use of RNA interference for targeting costly fish pathogenic viruses. (C) 2009 Elsevier B.V. All rights reserved.
Authors
I am an author on this paper
Click your name to claim this paper and add it to your profile.
Reviews
Recommended
No Data Available