4.7 Article Proceedings Paper

Molecular mechanisms in evolutionary cardiology failure

Journal

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1749-6632.2009.05084.x

Keywords

heart failure; cardiac hypertrophy; microRNA; fibrosis; fetal hypothesis; wall stress hypothesis; Laplace's law; aldosterone; evolution; Darwinian or evolutionary medicine

Ask authors/readers for more resources

Integration of the relevant evolutionary paradigm in cardiology has not yet been fully achieved: In the past, heart failure (HF) was mainly ascribed to infections, and the origins of cardiac hypertrophy (CH) were regarded as mechanical. Recent changes in lifestyle have both reduced the incidence of infections and increased lifespan, and H F is now seen as a complex disease one that is still caused by mechanical disorder, but also associated with ischemia and senescence. The long-held view that CH serves to restore myocardial economy back to normal is still valid. The adaptive process is characterized by a quantitative and a qualitative fetal gene reprogramming, which is now being confirmed by recent advances in microRNA research. It underscores the fact CH is the physiologic reaction of the heart to a pathologic stimulus. The goal for therapy is economic, not inotropic. Another major issue is myocardial fibrosis, a major determinant of diastolic function and arrhythmias. Recent changes in lifestyle have crucially modified the context in which HF occurs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available