4.5 Article

Transcriptomic analysis of genes in the nitrogen recycling pathway of meat-type chickens divergently selected for feed efficiency

Journal

ANIMAL GENETICS
Volume 45, Issue 2, Pages 215-222

Publisher

WILEY
DOI: 10.1111/age.12098

Keywords

glutamine; nitrogen cycling; nutrient utilization; purine biosynthesis pathway; uric acid

Funding

  1. USDA NRI [2009-35205-05208]
  2. Georgia Food Industry Partnership Grant [10.26KR696-110]

Ask authors/readers for more resources

The understanding of the dynamics of ammonia detoxification and excretion in uricotelic species is lagging behind ureotelic species. The relative expression of genes involved in nitrogen recycling and feed efficiency in chickens is unknown. The objective of this study was to investigate the transcriptomics differences in key genes in the nitrogen (N) metabolism and purine biosynthesis pathway in a chicken population divergently selected for low (LRFI) or high (HRFI) residual feed intake at days 35 and 42 using duodenum, liver, pectoralis major (P. major) and kidney. There was a significant positive correlation between RFI and fecal N. The purine salvage pathway was activated in the LRFI compared with HRFI at days 42. The birds in the LRFI population attained greater feed efficiency by having lower FI, increasing their protein retention and producing adequate glutamine to maintain growth compared with the HRFI line. To maintain growth, excess N is deaminated mostly to generate purine nucleotides. Generating purine nucleotides primarily from the purine biosynthesis pathway is energetically costly, and to preserve energy, they preferentially generate nucleotides from the purine salvage pathway. The LRFI birds need to generate sufficient nucleotides to maintain growth despite reduced FI that then results in reduced fecal N.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available