4.7 Article

Budesonide-Loaded Guar Gum Microspheres for Colon Delivery: Preparation, Characterization and in Vitro/in Vivo Evaluation

Journal

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume 16, Issue 2, Pages 2693-2704

Publisher

MDPI
DOI: 10.3390/ijms16022693

Keywords

-

Ask authors/readers for more resources

A novel budesonide (BUD) colon delivery release system was developed by using a natural polysaccharide, guar gum. The rigidity of the microspheres was induced by a chemical cross-linking method utilizing glutaraldehyde as the cross-linker. The mean particle size of the microspheres prepared was found to be 15.21 +/- 1.32 mu m. The drug loading and entrapment efficiency of the formulation were 17.78% +/- 2.31% and 81.6% +/- 5.42%, respectively. The microspheres were spherical in shape with a smooth surface, and the size was uniform. The in vitro release profiles indicated that the release of BUD from the microspheres exhibited a sustained release behavior. The model that fitted best for BUD released from the microspheres was the Higuchi kinetic model with a correlation coefficient r = 0.9993. A similar phenomenon was also observed in a pharmacokinetic study. The prolongation of the half-life (t(1/2)), enhanced residence time (mean residence time, MRT) and decreased total clearance (CL) indicated that BUD microspheres could prolong the acting time of BUD in vivo. In addition, BUD guar gum microspheres are thought to have the potential to maintain BUD concentration within target ranges for a long time, decreasing the side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. None of the severe signs, like the appearance of epithelial necrosis and the sloughing of epithelial cells, were detected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available