4.5 Article

Biosynthesis of a water-soluble lipid I analogue and a convenient assay for translocase I

Journal

ANALYTICAL BIOCHEMISTRY
Volume 461, Issue -, Pages 36-45

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2014.05.018

Keywords

MurX; MraY; Translocase I; Mycobacterium tuberculosis; Water-soluble lipid I; MurX inhibitors

Funding

  1. National Institutes of Health (NIH) [AI084411]
  2. University of Tennessee
  3. NIH Shared Instrumentation Grant

Ask authors/readers for more resources

Translocase I (MraY/MurX) is an essential enzyme in growth of the vast majority of bacteria that catalyzes the transformation from UDP-MurNAc-pentapeptide (Park's nucleotide) to prenyl-MurNAc-pentapeptide (lipid I), the first membrane-anchored peptidoglycan precursor. MurX has received considerable attention in the development of new tuberculosis (TB) drugs due to the fact that the MurX inhibitors kill exponentially growing Mycobacterium tuberculosis (Mtb) much faster than clinically used TB drugs. Lipid I isolated from Mtb contains the C-50-prenyl unit that shows very poor water solubility; thus, this chemical characteristic of lipid I renders MurX enzyme assays impractical for screening and lacks reproducibility of the enzyme assays. We have established a scalable chemical synthesis of Park's nucleotide-N-epsilon-dansylthiourea 2 that can be used as a MurX enzymatic substrate to form lipid I analogues. In our investigation of the minimum structure requirement of the prenyl phosphate in the MraY/MurX-catalyzed lipid I analogue synthesis with 2, we found that neryl phosphate (C-10 Phosphate) can be recognized by MraY/MurX to generate the water-soluble lipid I analogue in quantitative yield under the optimized conditions. Here, we report a rapid and robust analytical method for quantifying MraY/MurX inhibitory activity of library molecules. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available