4.6 Article

Folic acid promotes the myogenic differentiation of C2C12 murine myoblasts through the Akt signaling pathway

Journal

INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE
Volume 36, Issue 4, Pages 1073-1080

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/ijmm.2015.2311

Keywords

folic acid; C2C12 muscle cells; myogenic differentiation; Akt signaling pathway; MyoD; myogenin; myosin heavy chain

Funding

  1. R&D program of MOTIF/KEIT [10040391]
  2. National Research Foundation of Korea (NRF) - Korean Government (Ministry of Science, ICT and Future Planning) [2009-0083538]

Ask authors/readers for more resources

Folic acid is a water-soluble vitamin in the B-complex group, and an exogenous intake is required for health, growth and development. As a precursor to co-factors, folic acid is required for one-carbon donors in the synthesis of DNA bases and other essential biomolecules. A lack of dietary folic acid can lead to folic acid deficiency and can therefore result in several health problems, including macrocytic anemia, elevated plasma homocysteine levels, cardiovascular disease, birth defects, carcinogenesis, muscle weakness and difficulty in walking. Previous studies have indicated that folic acid exerts a positive effect on skeletal muscle functions. However, the precise role of folic acid in skeletal muscle cell differentiation remains poorly understood. Thus, in the present study, we examined the effects of folic acid on neomyotube maturation and differentiation using C2C12 murine myoblasts. We found that folic acid promoted the formation of multinucleated myotubes, and increased the fusion index and creatine kinase (CK) activity in a concentration-dependent manner. In addition, western blot analysis revealed that the expression levels of the muscle-specific marker, myosin heavy chain (MyHC), as well as those of the myogenic regulatory factors (MRFs), MyoD and myogenin, were increased in the folic acid-treated myotubes during myogenic differentiation. Folic acid also promoted the activation of the Akt pathway, and this effect was inhibited by treatment of the C2C12 cells with LY294002 (Akt inhibitor). Blocking of the Akt pathway with a specific inhibitor revealed that it was necessary for mediating the stimulatory effects of folic acid on muscle cell differentiation and fusion. Taken together, our data suggest that folic acid promotes the differentiation of C2C12 cells through the activation of the Akt pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available