4.5 Article

An organic-inorganic hybrid nanostructure-functionalized electrode for electrochemical immunoassay of biomarker by using magnetic bionanolabels

Journal

ANALYTICAL BIOCHEMISTRY
Volume 417, Issue 1, Pages 89-96

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2011.06.001

Keywords

Alpha-fetoprotein; Electrochemical immunoassay; Organic inorganic hybrid composite electrode; Magnetic bionanolabels

Funding

  1. National Natural Science Foundation of China [21075019, 20735002]
  2. Research Fund for the Doctoral Program of Higher Education of China [20103514120003]
  3. Award Program for Minjiang Scholar Professorship
  4. 973 National Basic Research Program of China [2010CB732403]
  5. Program for Returned High-Level Overseas Chinese Scholars of Fujian Province [XRC-0929]

Ask authors/readers for more resources

A new electrochemical immunoassay of alpha-fetoprotein (AFP) was developed on an organic-inorganic hybrid nanostructure-functionalized carbon electrode by coupling with magnetic bionanolabels. Multi-walled carbon nanotubes (CNTs), single-stranded DNA, thionine and AFP were utilized for the construction of the immunosensor, while the core-shell Fe3O4-silver nanocomposites were employed for the label of horseradish peroxidase-anti-AFP conjugates (HRP-anti-AFP-AgFe). Electrochemical measurement toward AFP was carried out by using magnetic bionanolabels as traces and H2O2 as enzyme substrate with a competitive-type immunoassay mode. Experimental results indicated that the immunosensors with carbon nanotubes and DNA exhibited better electrochemical responses than those of without carbon nanotubes or DNA. Under optimal conditions, the electrochemical immunosensor by using HRP-anti-AFP-AgFe as signal antibodies exhibited a linear range of 0.001-200 ng mL(-1) AFP with a low detection limit of 0.5 pg mL(-1) at 3S(B). Both intra-and inter-assay coefficients of variation were 7.3%, 9.4%, 8.7% and 10.2%, 7.8%, 9.4% toward 0.01, 30, 120 ng mL(-1) AFP, respectively. The specificity and stability of the electrochemical immunoassay were acceptable. In addition, the methodology was validated for 12 clinical serum specimens including 9 positive specimens and 3 normal specimens, receiving a good correlation with the results obtained from the referenced electrochemiluminescence assay. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available