4.5 Article

Parallel DNA amplification by convective polymerase chain reaction with various annealing temperatures on a thermal gradient device

Journal

ANALYTICAL BIOCHEMISTRY
Volume 387, Issue 1, Pages 102-112

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2009.01.017

Keywords

Polymerase chain reaction; Convective flow; Thermal gradient PCR; Parallel amplification; Microfluidic

Funding

  1. National Natural Science Foundation of China [30700155, 30870676, 30800261]
  2. National High Technology Research and Development Program of China (863 Program) [2007AA10Z204]

Ask authors/readers for more resources

We present a thermal gradient convective polymerase chain reaction (PCR) for parallel DNA amplification with different annealing temperatures. The thermal gradient for microfluidic gradient PCR is produced by an innovative fin design whose formation principle is given. Without the need for a pump, the buoyancy forces continuously circulate reagents in a closed loop through different thermal zones, which brings self-actuated convective-flow PCR. In our prototype, we measured a temperature difference of about 45 degrees C along the gradient direction on the copper flake (45 x 40 x 4 mm). When the temperature of the hot zone is 90-97 degrees C and the temperature of the cold zone is 60-70 degrees C, the convection triggered two-temperature amplification of 112-bp fragment of Escherichia coli DNA. The time for amplification is less than 45 min. Interestingly, parallel DNA amplification with different annealing temperatures ranging from 60 to 70 degrees C was performed by this method. The PCR thermocycler demonstrated herein can be further scaled down and the loop length can be further reduced, and therefore the PCR times can be further reduced. These devices are Suited as a platform for a new generation of low-power, portable DNA analysis systems. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemical Research Methods

Cationic and anionic detergent buffers in sequence yield high-quality genomic DNA from diverse plant species

Saranya Krishnan, Shina Sasi, Preshobha Kodakkattumannil, Salima Al Senaani, Geetha Lekshmi, Martin Kottackal, Khaled M. A. Amiri

Summary: This study aimed to develop an efficient DNA extraction protocol suitable for diverse plant species and tissues. A reliable and consistent protocol was described for the extraction of high-quality DNA from difficult-to-extract plant species. The optimized protocol was successful in extracting high-quality DNA from various plant species and tissues, making it useful for genomic studies of recalcitrant plants.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

Pyrophosphate detection method using 5-Br-PAPS to detect nucleic acid amplification - Application to LAMP method

Eisaku Hokazono, Saori Fukumoto, Takeshi Uchiumi, Susumu Osawa

Summary: This study proposes a method for detecting nucleic acid amplification using pyrophosphate, which requires only two reagents and an automated analyzer. The technique has high sensitivity and reproducibility, and can detect pyrophosphate within 10 minutes. Therefore, this method has the potential to be a new, rapid, and simple detection technique for amplified nucleic acids.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

SURE gel electrophoresis: A method for improved detection and purification of dilute nucleic acid samples

Drew S. Sowersby, L. Kevin Lewis

Summary: SURE electrophoresis is a new method for concentrating samples in gels, which allows efficient detection of highly dilute DNA samples. This approach generates single bands with enhanced signal intensities and minimal band broadening.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

Echinacoside regulates PI3K/AKT/HIF-1α/VEGF cross signaling axis in proliferation and apoptosis of breast cancer

Hongyi Liang, Guoliang Yin, Guangxi Shi, Zhiyong Liu, Xiaofei Liu, Jingwei Li

Summary: The mechanism of Echinacoside (ECH) in treating breast cancer (BC) was explored through network pharmacology and experimental validation. It was found that ECH plays an important role in anti-BC by regulating the PI3K/AKT/HIF-1 alpha/VEGF signaling pathway, and it exhibits multi-target and multi-pathway effects.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

Comparison of colorimetric, fluorometric, and liquid chromatography-mass spectrometry assays for acetyl-coenzyme A

Daniel S. Kantner, Emily Megill, Anna Bostwick, Vicky Yang, Carmen Bekeova, Alexandria Van Scoyk, Erin L. Seifert, Michael W. Deininger, Nathaniel W. Snyder

Summary: This study compared the results of different methods for measuring the amount of acetyl-Coenzyme A. The colorimetric ELISA kit did not produce interpretable results, while the fluorometric enzymatic kit showed comparable results to the LC-MS-based methods depending on the matrix and extraction conditions. LC-MS/MS and LC-HRMS methods produced well-aligned results, especially when using stable isotope-labeled internal standards.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

Synergistic co-catalytic nanozyme system for highly efficient one-pot colorimetric sensing at neutral pH: Combining molybdenum trioxide and Fe (III)-Modified covalent triazine framework

Jingyan Xu, Hanying Tan, Xionghui Ma, Linjing Su, Zhi Zhang, Yuhao Xiong

Summary: This study investigates the co-catalytic capabilities of MoO3 nanosheets in enhancing the enzyme-like catalytic activity of a two-dimensional ultrathin Fe(III)-modified covalent triazine framework (Fe-CTF) under neutral pH conditions. The Fe-CTF/MoO3 co-catalytic system exhibits enzyme-mimicking activity and enables the development of a colorimetric method for glucose detection. Furthermore, a straightforward one-pot colorimetric method is established for screening XOD inhibitors.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

A novel fusion technology utilizing complex network and sequence information for FAD-binding site identification

Lichao Zhang, Kang Xiao, Xueting Wang, Liang Kong

Summary: A novel fusion technology was designed to identify FAD-binding sites, achieving the best results on two independent test datasets and outperforming existing methods significantly. The high performance and certainty of the method were demonstrated through statistical tests and cross-entropy loss analysis.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

Investigation of the electrochemical properties of edoxaban using glassy carbon and boron-doped diamond electrodes and development of an eco-friendly and cost effective voltammetric method for its determination

Abdulkadir Kilic, Mehmet Aslan, Abdulkadir Levent

Summary: This study developed a simple, rapid, sensitive, and selective voltammetric technique for the electrochemical characterization and detection of the highly risky drug Edoxaban. The optimized voltammetric method showed good analytical working range and was successfully applied to urine and tablet samples.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

Application of liquid-based colorimetric method for high throughput screening of bioplastic-degrading strains using esterase assay

Su Hyun Kim, Nara Shin, Jong-Min Jeon, Jeong-Jun Yoon, Jeong Chan Joo, Hee Taek Kim, Shashi Kant Bhatia, Yung-Hun Yang

Summary: To address environmental issues caused by traditional plastics, bioplastics have gained attention as alternatives. Although bioplastics have better degradability, their degradation still takes longer than anticipated. This study proposes a novel screening method to identify bioplastic degraders faster, saving time and providing more quantitative data.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

Disposable biosensor based on ionic liquid, carbon nanofiber and poly (glutamic acid) for tyramine determination

Irem Okman Kocoglu, Pinar Esra Erden, Esma Kilic

Summary: In this study, an electrochemical biosensor based on carbon nanofibers and ionic liquid modification was constructed for tyramine detection. The biosensor showed linear response, low detection limit, high sensitivity, and exhibited good reproducibility, stability, and anti-interference ability.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

LAMPrimers iQ: New primer design software for loop-mediated isothermal amplification (LAMP)

Liana U. Akhmetzianova, Timur M. Davletkulov, Assol R. Sakhabutdinova, Alexey Chemeris, Irek M. Gubaydullin, Ravil R. Garafutdinov

Summary: A new program called LAMPrimers iQ has been developed for high-quality LAMP primer design, and its advantages in providing higher specificity and reliable detection of viral RNA were validated using SARS-CoV-2 coronavirus RNA as a model target.

ANALYTICAL BIOCHEMISTRY (2024)

Article Biochemical Research Methods

Direct competitive assay for HER2 detection in human plasma using Bloch surface wave-based biosensors

Tommaso Pileri, Alberto Sinibaldi, Agostino Occhicone, Norbert Danz, Elena Giordani, Matteo Allegretti, Frank Sonntag, Peter Munzert, Patrizio Giacomini, Francesco Michelotti

Summary: This study developed a biosensing device based on one-dimensional photonic crystal to detect HER2 in breast cancer. The device combines label-free and fluorescence operation modes, allowing for real-time and accurate detection in less than 20 minutes. It offers a promising technique for combined label-free and fluorescence detection in disease diagnosis and therapeutic monitoring.

ANALYTICAL BIOCHEMISTRY (2024)