4.5 Article

Fluorescence polarization assay for calmodulin binding to plasma membrane Ca2+-ATPase: Dependence on enzyme and Ca2+ concentrations

Journal

ANALYTICAL BIOCHEMISTRY
Volume 385, Issue 1, Pages 1-6

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2008.10.022

Keywords

Fluorescence polarization; Calmodulin; Ca2+-ATPase; Dissociation constant

Funding

  1. American Chemical Society Petroleum Research Fund

Ask authors/readers for more resources

Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the K-d for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant Kd in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a Kd value of CaM with PMCA (5.8 +/- 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (K-d = 9.8 +/- 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available