4.7 Article

Chemiluminescence assay for quinones based on generation of reactive oxygen species through the redox cycle of quinone

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 393, Issue 4, Pages 1337-1343

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-008-2541-7

Keywords

Luminol chemiluminescence; Quinone; Semiquinone radicals; Redox cycle; Ubiquinone

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan [17790100]
  2. Grants-in-Aid for Scientific Research [17790100] Funding Source: KAKEN

Ask authors/readers for more resources

A sensitive and selective chemiluminescence assay for the determination of quinones was developed. The method was based on generation of reactive oxygen species through the redox reaction between quinone and dithiothreitol as reductant, and then the generated reactive oxygen was detected by luminol chemiluminescence. The chemiluminescence was intense, long-lived, and proportional to quinone concentration. It is concluded that superoxide anion was involved in the proposed chemiluminescence reaction because the chemiluminescence intensity was decreased only in the presence of superoxide dismutase. Among the tested quinones, the chemiluminescence was observed from 9,10-phenanthrenequinone, 1,2-naphthoquinone, and 1,4-naphthoquinone, whereas it was not observed from 9,10-anthraquinone and 1,4-benzoquinone. The chemiluminescence property was greatly different according to the structure of quinones. The chemiluminescence was also observed for biologically important quinones such as ubiquinone. Therefore, a simple and rapid assay for ubiquinone in pharmaceutical preparation was developed based on the proposed chemiluminescence reaction. The detection limit (blank + 3SD) of ubiquinone was 0.05 mu M (9 ng/assay) with an analysis time of 30 s per sample. The developed assay allowed the direct determination of ubiquinone in pharmaceutical preparation without any purification procedure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available