4.7 Review

Intracellular transport and localization of microsomal cytochrome P450

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 392, Issue 6, Pages 1075-1084

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-008-2200-z

Keywords

Microsomal P450s; Mitochondria; Phosphorylation; Plasma membrane; Protein targeting; Degradation

Funding

  1. The Swedish Research Council
  2. Torsten and Ragnar Soderbergs Stiftelser

Ask authors/readers for more resources

The cytochrome P450 (P450) enzymes are mainly localized to the endoplasmic reticulum (ER), where they function within catalytic complexes metabolizing xenobiotics and some endogenous substrates. However, certain members of families 1-3 were also found in other subcellular compartments, such as mitochondria, plasma membrane, and lysosomes. The physiological function of these enzymes in non-ER locations is not known, although plasma-membrane-associated P450s have been described to be catalytically active and to participate in immune-mediated reactions with autoantibody formation that can trigger drug-induced hepatitis. Several retention/retrieval mechanisms are active in the ER retention of the P450s and inverse integration of the translated P450 into the ER membrane appears to be responsible for transport to the plasma membrane. Furthermore, hydrophilic motifs in the NH(2)-terminal part have been suggested to be important for mitochondrial import. Phosphorylation of P450s has been described to be important for increased rate of degradation as well as for targeting into mitochondria. It was also suggested that the mitochondria-targeted P450s from families 1-3 could be active in drug metabolism using an alternative electron transport chain. In this review we present an update of the field emphasizing studies concerning localization, posttranslational modification, such as phosphorylation, and intracellular transport of microsomal P450s.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available