4.7 Article

Determination of compound-specific Hg isotope ratios from transient signals using gas chromatography coupled to multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS)

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 393, Issue 1, Pages 345-355

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-008-2165-y

Keywords

Multicollector inductively coupled plasma mass spectrometry; Mercury; Methylmercury; Isotope ratios; Transient signals; Speciation; Gas chromatography; Mass bias; Isotope fractionation

Funding

  1. NSERC COMERN (Natural Sciences and Engineering Research Council Collaborative Mercury Research Network)

Ask authors/readers for more resources

MeHg and inorganic Hg compounds were measured in aqueous media for isotope ratio analysis using aqueous phase derivatization, followed by purge-and-trap preconcentration. Compound-specific isotope ratio measurements were performed by gas chromatography interfaced to MC-ICP/MS. Several methods of calculating isotope ratios were evaluated for their precision and accuracy and compared with conventional continuous flow cold vapor measurements. An apparent fractionation of Hg isotopes was observed during the GC elution process for all isotope pairs, which necessitated integration of signals prior to the isotope ratio calculation. A newly developed average peak ratio method yielded the most accurate isotope ratio in relation to values obtained by a continuous flow technique and the best reproducibility. Compound-specific isotope ratios obtained after GC separation were statistically not different from ratios measured by continuous flow cold vapor measurements. Typical external uncertainties were 0.16aEuro degrees RSD (n = 8) for the (202)Hg(/198)Hg ratio of MeHg and 0.18aEuro degrees RSD for the same ratio in inorganic Hg using the optimized operating conditions. Using a newly developed reference standard addition method, the isotopic composition of inorganic Hg and MeHg synthesized from this inorganic Hg was measured in the same run, obtaining a value of delta (202)Hg = -1.49 +/- 0.47 (2SD; n = 10). For optimum performance a minimum mass of 2 ng per Hg species should be introduced onto the column.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available