4.7 Article

A high-precision ratiometric fluorosensor for pH: Implementing time-dependent non-linear calibration protocols for drift compensation

Journal

ANALYTICA CHIMICA ACTA
Volume 606, Issue 1, Pages 63-71

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2007.10.035

Keywords

pH; optode; 8-hydroxypyrene-1,3,6-trisulfonic acid; photoacidity; non-linear calibration; signal drift; fluorescence ratio

Ask authors/readers for more resources

We present a versatile time-dependent non-linear calibration protocol for optical sensors, implemented on the pH sensitive ratiometric fluorophore 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) immobilized in ethyl-cellulose. The calibration protocol individually compensated for the progressive drift of calibration parameters, whereby sensor precision and accuracy, as well as applicable lifetime were improved. A severely reduced photoacidity was observed for the immobilized fluorophore, for which excited state dynamics was characterized and benefited from during measurements. Due to the significantly reduced photoacidity of HPTS immobilized in the ethyl-cellulose sensing membrane, a dual excitation/dual emission (F-1, ex/em: 405/440nm and F-2, ex/em: 465/510 nm) ratiometric (R-F1.F2 = F-1/F-2) sensing scheme could be used to amplify sensor response. The signal to noise (SIN) ratio was enhanced by similar to 400% utilizing the dual excitation/dual emission ratiometric sensing scheme, rather than the more commonly used protocol of dual excitation/single emission for HPTS fluorescence. Apparent pK(a) of the fluorophore ranged from 6.74 to 8.50, mainly determined by the immobilization procedure. The repeatability (IUPAC, pooled standard deviation) over three pH values (6.986, 7.702 and 7.828) was 0.0044 pH units for the optical sensor, compared to 0.0046 for the electrode used for standardization. Sensor analytical characteristics were thereby in principle limited by the performance of the standardization procedure. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available