4.7 Article

Generalized modeling of chip geometry and cutting forces in multi-point thread turning

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijmachtools.2015.08.005

Keywords

Thread turning; Cutting force; Multi-point insert; Infeed plan

Funding

  1. Tenaris Tamsa, Veracruz, Mexico

Ask authors/readers for more resources

A generalized mechanics model of multi-point thread turning operations is presented. The cross section of the chip is determined from the thread profiles of the current and previous teeth as well as the infeed settings of the tool. The chip is discretized along the cutting edge, and the cutting force coefficients are evaluated for each element considering the varying effective oblique cutting angles and chip thickness. The nonlinear Kienzle force model is used to account for the effect of edge radius at low chip thickness values. Total cutting forces are obtained by resolving the elemental forces in the insert coordinate system, and integrating them along the engaged teeth. The experimentally validated generalized mechanics model can be used to predict the chip and cutting load distributions for multi-point inserts with custom thread profiles and infeed plans. The model can be used for both process planning and insert design. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available