4.7 Article

Enhanced water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) hybrid membrane by incorporating ellipsoidal microcapsules

Journal

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Volume 40, Issue 26, Pages 8398-8406

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2015.04.138

Keywords

Ellipsoidal microcapsules; Quasi-one dimensional structure; Sulfonated poly(ether ether ketone); Water retention; Proton conductivity

Funding

  1. National Science Fund for Distinguished Young Scholars [21125627]
  2. National High Technology Research and Development Program of China [2012AA03A611]
  3. Program of Introducing Talents of Discipline to Universities [B06006]

Ask authors/readers for more resources

Two kinds of polymeric ellipsoidal microcapsules (EMCs) with different functional groups (phosphoric acid groups and imidazole groups) were synthesized via precipitation polymerization and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare hybrid membranes. The structure, thermal stability and composition of EMCs were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The quasi-one dimensional structure endowed EMCs with high water uptake and water retention. Especially, for the hybrid membranes filled with 5 wt.% phosphoric acid-functionalized polymeric EMCs, water uptake was increased from 19.0% for pristine SPEEK membranes to 58.2%, and the water retention was 15.1% after 180 min testing at 40 degrees C and 20% RH, which is threefold and ninefold higher than those of pristine SPEEK membranes, respectively. Particularly, the proton conductivity at low RH was still up to 3.51 x 10(-3) S/cm after 60 min testing. The results manifested that the ellipsoidal microcapsules, as a new kind of filler, had great potential in enhancing the water retention and low-humidity proton conductivity of proton exchange membranes. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available