4.6 Article

Differential involvement of COX1 and COX2 in the vasculopathy associated with the α-galactosidase A-knockout mouse

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00929.2008

Keywords

endothelium; globotriaosylceramide; cyclooxygenase

Funding

  1. National Institute of Diabetes and Digestive and Kidney Diseases [5RO1 DK-055823-06]
  2. American Heart Association Scientist Development [0430045N]

Ask authors/readers for more resources

Park JL, Shu L, Shayman JA. Differential involvement of COX1 and COX2 in the vasculopathy associated with the alpha-galactosidase A-knockout mouse. Am J Physiol Heart Circ Physiol 296: H1133-H1140, 2009. First published February 6, 2009; doi: 10.1152/ajpheart.00929.2008.-The lysosomal storage disorder Fabry disease is characterized by excessive globotriaosylceramide (Gb3) accumulation in major organs such as the heart and kidney. Defective lysosomal alpha-galactosidase A (Gla) is responsible for excessive Gb3 accumulation, and one cell sensitive to the effects of Gb3 accumulation is vascular endothelium. Endothelial dysfunction is associated with Fabry disease and excessive cellular Gb3. We previously demonstrated that excessive vascular Gb3 in a mouse model of Fabry disease, the Gla-knockout (Gla(-/0)) mouse, results in abnormal vascular function, which includes abnormal endothelium-dependent contractions, a vascular phenomenon known to involve cyclooxygenase (COX). Therefore, we hypothesized that the vasculopathy in the Gla knockout mouse may be due to a vasoactive COX-derived product. To test this hypothesis, vascular reactivity experiments were performed in aortic rings from wild-type (Gla(-/0)) and Gla(-/0) mice in the presence and absence of specific and nonspecific COX inhibitors. Specific inhibition of COX1 or COX2 in endothelium-intact rings from Gla(-/0) mice decreased overall phenylephrine contractility compared with untreated Gla(-/0) rings, whereas COX inhibitors had no effect on contractility in endothelium-denuded rings. Nonspecific inhibition of COX with indomethacin (10 mu mol/l) or COX1 inhibition with valeryl salicylate (3 mmol/l) improved endothelial function in rings from Gla(-/0) mice, but COX2 inhibition with NS-398 (1 mu mol/l) further increased endothelial dysfunction in rings from Gla(-/0) mice. These results suggest that, in the Gla(-/0) mice, COX1 and COX2 activity are increased and localized in the endothelium, producing vasopressor and vasorelaxant products, which contribute to the Fabryrelated vasculopathy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available