4.6 Article

Effect of exercise and training on phospholemman phosphorylation in human skeletal muscle

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00533.2010

Keywords

cycle exercise; protein kinase C; Na+-K+-ATPase; protein interaction

Funding

  1. Swedish Research Council
  2. Novo Nordisk Foundation
  3. commission of the European Communities [LSHM-CT-2004-512013, LSHM-CT-2004-005272]
  4. National Health and Medical Research Council [606553]

Ask authors/readers for more resources

Benziane B, Widegren U, Pirkmajer S, Henriksson J, Stepto NK, Chibalin AV. Effect of exercise and training on phospholemman phosphorylation in human skeletal muscle. Am J Physiol Endocrinol Metab 301: E456-E466, 2011. First published June 7, 2011; doi:10.1152/ajpendo.00533.2010.-Phospholemman (PLM, FXYD1) is a partner protein and regulator of the Na+-K+-ATPase (Na+-K+ pump). We explored the impact of acute and short-term training exercise on PLM physiology in human skeletal muscle. A group of moderately trained males (n = 8) performed a 1-h acute bout of exercise by utilizing a one-legged cycling protocol. Muscle biopsies were taken from vastus lateralis at 0 and 63 min (non-exercised leg) and 30 and 60 min (exercised leg). In a group of sedentary males (n = 9), we determined the effect of a 10-day intense aerobic cycle training on Na+-K+-ATPase subunit expression, PLM phosphorylation, and total PLM expression as well as PLM phosphorylation in response to acute exercise (1 h at similar to 72% (V) over dot(O2peak)). Biopsies were taken at rest, immediately following, and 3 h after an acute exercise bout before and at the conclusion of the 10-day training study. PLM phosphorylation was increased both at Ser(63) and Ser(68) immediately after acute exercise (75%, P < 0.05, and 30%, P < 0.05, respectively). Short-term training had no adaptive effect on PLM phosphorylation at Ser(63) and Ser(68), nor was the total amount of PLM altered posttraining. The protein expressions of alpha(1-), alpha(2-),and beta(1)-subunits of Na+-K+-ATPase were increased after training (113%, P < 0.05, 49%, P < 0.05, and 27%, P < 0.05, respectively). Whereas an acute bout of exercise increased the phosphorylation of PKC alpha/beta II on Thr(638/641) pre- and posttraining, phosphorylation of PKC zeta/lambda on Thr(403/410) was increased in response to acute exercise only after the 10-day training. In conclusion, we show that only acute exercise, and not short-term training, increases phosphorylation of PLM on Ser63 and Ser68, and data from one-legged cycling indicate that this effect of exercise on PLM phosphorylation is not due to systemic factors. Our results provide evidence that phosphorylation of PLM may play a role in the acute regulation of the Na+-K+-ATPase response to exercise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available