4.6 Article

Regulation of tryptophan 2,3-dioxygenase by HOXA10 enhances embryo viability through serotonin signaling

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00439.2010

Keywords

tryptophan degradation; implantation; serotonin

Funding

  1. NICHD [HD-052668, HD-036887]
  2. EUNICE KENNEDY SHRIVER NATIONAL INSTITUTE OF CHILD HEALTH &HUMAN DEVELOPMENT [U54HD052668, R01HD036887, R29HD036887] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Doherty LF, Kwon HE, Taylor HS. Regulation of tryptophan 2,3-dioxygenase by HOXA10 enhances embryo viability through serotonin signaling. Am J Physiol Endocrinol Metab 300: E86-E93, 2011. First published October 19, 2010; doi:10.1152/ajpendo.00439.2010.-Tryptophan 2,3-dioxygenase (TDO) is expressed in endometrium and catabolizes tryptophan, a precursor in the biosynthesis of serotonin. Tryptophan metabolism is an important mechanism for regulation of serotonin levels. Preimplantation mouse embryos are known to express serotonin receptors, specifically the 5-HT1D and 5-HT7 serotonin receptor subtypes. Here we demonstrate that Hoxa10 regulates endometrial TDO expression and improves embryo viability through increased serotonin production. Transfection of pcDNA-Hoxa10 to the murine uterus increased total TDO expression. In vitro, epithelial cell TDO expression was decreased after transfection with Hoxa10. Decreased glandular TDO in response to HOXA10 may augment serotonin production by increasing tryptophan availability. Conversely, stromal TDO expression increased with constitutive Hoxa10 expression. In mice, epithelial serotonin was increased in response to constitutive expression of Hoxa10. Embryo quality was impaired after treatment with Hoxa10 antisense. Blockade of serotonin receptors 1D and 7 also resulted in impaired embryo development, indicating an essential role for Hoxa10 induction of TDO and subsequent serotonin production in embryo development. Transfection of pcDNA-TDO also decreased the number of T cells in the endometrial stroma. We have shown a novel mechanism by which HOXA10 regulates endometrial TDO expression. In the endometrial stroma, HOXA10 increases TDO mRNA, which may increase tryptophan catabolism, allowing for immune tolerance at the time of embryo implantation. In endometrial glands, HOXA10 decreases TDO mRNA leading to increased serotonin that in turn acts to promote normal embryo development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available