4.6 Article

β-Glycoglycosphingolipid-Induced Alterations of the STAT Signaling Pathways Are Dependent on CD1d and the Lipid Raft Protein Flotillin-2

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 174, Issue 4, Pages 1390-1399

Publisher

ELSEVIER SCIENCE INC
DOI: 10.2353/ajpath.2009.080841

Keywords

-

Categories

Funding

  1. The Roaman-Epstein Liver Research Foundation

Ask authors/readers for more resources

beta-glucosylceramide has been shown to affect natural killer T cell function in models of inflammation. We, therefore, investigated the effects of different beta-glycosphingolipids, including beta-glucosylceramide, on STAT (signal transducers and activators of transcription) signaling pathways and determined whether these effects were mediated by lipid raft microdomains and/or CD1d molecules. The effects of alpha- and beta-structured ligands on the lipid raft protein flotillin-2 were studied in both natural killer T hybridoma cells and leptin-deficient mice. To determine whether CD1d was involved in the effects of the beta-glycosphingolipids, an anti-CD1d blocking antibody was used in a cell proliferation assay system. The downstream effects on the protein phosphorylation levels of STAT1, STAT3, and STATE were examined in both immune-mediated hepatitis and hepatoma models. The effects of beta-glycosphingolipids on the STAT signaling pathways were found to be dependent on CD1d. Lipid rafts were affected by both the dose and ratio of the beta-glycosphingolipids and the acyl chain length, and these effects were followed by downstream effects on STAT proteins. Our results show that beta-glycosphingolipids have beneficial effects in natural killer T cell-dependent immune-mediated metabolic and malignant animal models in vivo. (Ant J Pathol 2009, 174:1390-1399; DOI: 10.2353/ajpath.2009.080841)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available