4.0 Review

Postmortem Imaging MDCT Features of Postmortem Change and Decomposition

Journal

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/PAF.0b013e3181c65e1a

Keywords

computed tomography; virtual autopsy; postmortem change; decomposition

Ask authors/readers for more resources

Multidetector computed tomography (MDCT) has emerged as an effective imaging technique to augment forensic autopsy. Postmortem change and decomposition are always present at autopsy and on postmortem MDCT because they begin to occur immediately upon death. Consequently, postmortem change and decomposition on postmortem MDCT should be recognized and not mistaken for a pathologic process or injury. Livor mortis increases the attenuation of vasculature and dependent tissues on MDCT. It may also produce a hematocrit effect with fluid levels in the large caliber blood vessels and cardiac chambers from dependent layering erythrocytes. Rigor mortis and algor mortis have no specific MDCT features. In contrast, decomposition through autolysis, putrefaction, and insect and animal predation produce dramatic alterations in the appearance of the body on MDCT. Autolysis alters the attenuation of organs. The most dramatic autolytic changes on MDCT are seen in the brain where cerebral sulci and ventricles are effaced and gray-white matter differentiation is lost almost immediately after death. Putrefaction produces a pattern of gas that begins with intravascular gas and proceeds to gaseous distension of all anatomic spaces, organs, and soft tissues. Knowledge of the spectrum of postmortem change and decomposition is an important component of postmortem MDCT interpretation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available