4.2 Article

Alcohol induces DNA damage and the Fanconi anemia D2 protein implicating FANCD2 in the DNA damage response pathways in brain

Journal

ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH
Volume 32, Issue 7, Pages 1186-1196

Publisher

WILEY
DOI: 10.1111/j.1530-0277.2008.00673.x

Keywords

ethanol; brain; DNA strand breaks; DNA damage responses; Fanconi anemia

Funding

  1. Medical Research Council [G0400568] Funding Source: researchfish
  2. MRC [G0400568] Funding Source: UKRI
  3. Biotechnology and Biological Sciences Research Council [Neu14238] Funding Source: Medline
  4. Medical Research Council [G0400568] Funding Source: Medline

Ask authors/readers for more resources

Background: The largest cause of neurological damage to children is prenatal exposure to alcohol and chronic alcohol use in adults is associated with neurodegeneration, dementia and long-term behavioral changes. Microarray analysis identified the DNA damage response (DDR) gene, Fanconi anemia (Fanc) D2, to be robustly upregulated in mouse midbrain following 24-hour in vivo exposure to ethanol. In this study, we investigate the ability of ethanol to generate DNA strand breaks, predicted substrates for the Fanc pathway and the potential role of FANCD2 in the DDR to ethanol in brain. Methods: The effect of ethanol on FANCD2 mRNA levels was measured by quantitative real time PCR using mouse brain and human neuronal cells. FANCD2 protein levels and ubiquitination were measured by Western blotting and immunocytochemistry. DNA damage induction by ethanol/acetaldehyde was measured using the Comet assay and gamma H2AX immunocytochemistry. Levels of DNA and RNA synthesis were measured in cell strains using H-3-thymidine or H-3-uridine up-take. Results: Chronic exposure to ethanol induced FANCD2 in mouse midbrain in vivo and in the nucleus of human neuronal cells in culture. However, there was no concomitant increase in the amount of ubiquitinated FANCD2. Acetaldehyde also induced nonubiquitinated FANCD2 protein, and we were able to demonstrate the ability of acetaldehyde to generate DNA double strand breaks, lesions which normally induce ubiquitination of FANCD2. Ethanol also inhibited both RNA and DNA synthesis in proliferating cells consistent with effects on transcription and replication. Conclusion: In contrast to other DNA damaging agents, ethanol/acetaldehyde generated DNA strand breaks without inducing ubiquitination of FANCD2, despite increasing protein levels in the nucleus. These data are consistent with recent reports that suggest the Fanconi anemia pathway plays an important role in the adult brain in response to DNA damage. Further work is required to establish what this role is, in particular the potential function of nonubiquitinated FANCD2 and its role in the DNA damage response in postmitotic neurons and neural precursor cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available