4.0 Article

Structural investigation of donor age effect on human bone marrow mesenchymal stem cells: FTIR spectroscopy and imaging

Journal

AGE
Volume 36, Issue 4, Pages -

Publisher

SPRINGER
DOI: 10.1007/s11357-014-9691-7

Keywords

ATR-FTIR spectroscopy; FTIR imaging; Bone marrow mesenchymal stemcells; Stemcell aging; Donor age effect

Funding

  1. METU internal funds
  2. Hacettepe University DPT project fund [2006 K 120 640-06-PEDI-STEM]

Ask authors/readers for more resources

Stem cell studies hold enormous potential for development of new therapies for tissue regeneration and repair. Bone marrow mesenchymal stem cells (BM-MSCs) can differentiate into a variety of nonhematopoietic tissues and contribute maintenance of healthy hematopoiesis by providing supportive cellular microenvironment into BM. Here, we investigated age-related differences in BM-MSCs by using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and FTIR imaging together with hierarchical clustering as a novel methods to clarify global alterations in the structure and function of macromolecules in characterized BM-MSCs of different aged donors. The results may contribute to identification of agerelated new molecular marker(s) to determine the effects of donor age on MSCs. The spectral results reflected that there were significant increases in the concentration of saturated lipids, proteins, glycogen, and nucleic acids in children and adolescent group BM-MSCs when compared to the infants and early and mid adults. The concentration of mentioned macromolecules in adult (early and mid) BM-MSCs were significantly lower than the concentrations in the children and adolescents. These results were attributed to the increase in the proliferation activity in younger BM-MSCs. The distribution of macromolecules into the cells was shown as in the form of chemical maps by FTIR imaging, and the results are in agreement with the ATR-FTIR spectroscopy results. The cellular activity degree was determined by the thiazolyl blue tetrazolium bromide (MTT) proliferation assay to support ATR-FTIR spectroscopy results. BM-MSCs of five different age groups were discriminated by making the hierarchical cluster analysis where the spectral data according to alterations in structure and composition of macromolecules were considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available