4.4 Article

miRNA Expression Profiles in Keloid Tissue and Corresponding Normal Skin Tissue

Journal

AESTHETIC PLASTIC SURGERY
Volume 36, Issue 1, Pages 193-201

Publisher

SPRINGER
DOI: 10.1007/s00266-011-9773-1

Keywords

miRNA; Keloid tissue; Normal skin tissue

Categories

Funding

  1. China Postdoctoral Science Foundation [20100471024]
  2. Doctor Foundation of The Second Affiliated Hospital of Harbin Medical University [BS2010-21]

Ask authors/readers for more resources

Background Because the molecular mechanism behind keloid pathogenesis is still largely unknown, the clinical management of keloids remains problematic. miRNA (microRNA) is a novel class of small regulatory RNA that has emerged as post-transcriptional gene repressors and participants in diverse pathophysiological processes of skin disease. In the present study we aimed to investigate expression profiles of miRNA in keloid tissue and to develop a further understanding of the molecular mechanism involved in the pathogenesis of keloids. Methods miRNA expression profiles in 12 pairs of keloid tissue and corresponding normal skin tissue were analyzed through a mammalian miRNA microarray containing established whole human mature and precursor miRNA sequences. Real-Time quantitative PCR was performed to confirm the array results. The putative targets of differentially expressed miRNA were functionally annotated by bioinformatics approaches. Results miRNA microarray analysis identified 32 differentially expressed miRNAs, and a total of 23 miRNAs exhibited higher expression, while 9 miRNAs demonstrated lower expression in keloid tissue than in normal skin tissue. Functional annotations of differentially expressed miRNA targets revealed that they were enriched in several signaling pathways important for scar wound healing. Conclusion This study showed that the expressions of many miRNAs were altered in keloid tissue, and their expression profiling may provide a useful clue for exploring the pathogenesis of keloids. miRNAs might partly contribute to the etiology of keloids by affecting several signaling pathways relevant to scar wound healing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available