4.7 Article

Assessing coupling between lakes and layered aquifers in a complex Pleistocene landscape based on water level dynamics

Journal

ADVANCES IN WATER RESOURCES
Volume 33, Issue 11, Pages 1331-1339

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.advwatres.2010.08.002

Keywords

Groundwater; Lake; Water level; Time series; Principal component analysis; High-pass filter

Funding

  1. German Ministry of Education and Research [0330562A]

Ask authors/readers for more resources

The biosphere reserve Schorfheide-Chorin is a scenic region with many lakes. Hydraulic coupling between lakes and groundwater is difficult to assess due to the very heterogeneous Pleistocene deposits with a complex layering of different aquifers, part of them being confined. Thus, a principal component analysis of time series of groundwater and lake water levels was performed. The first two principal components provided a quantitative measure of damping of the input signal, i.e., the extent to which time series of groundwater pressure heads or lake water levels are smoothed and delayed with respect to the input signal, i.e., groundwater recharge or precipitation minus evapotranspiration, respectively. The lakes differed substantially with respect to damping behaviour, indicating different impacts of deep groundwater contribution. For most of the groundwater wells, damping increased linearly with mean depth to water table. In contrast, some wells exhibited nearly identical behaviour independent of depth. High-pass filtered data of water table level from these wells were strongly and inversely correlated with those of barometric pressure fluctuations, pointing to a confined aquifer which was evidently not connected to the adjacent lake. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available