4.7 Article

Preparation of alginate microspheres by water-in-oil emulsion method for drug delivery: Effect of Ca2+ post-cross-linking

Journal

ADVANCED POWDER TECHNOLOGY
Volume 25, Issue 5, Pages 1541-1546

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apt.2014.05.001

Keywords

Alginate; Microspheres; Water-in-oil emulsion; Cross-linking; Drug delivery

Funding

  1. Office of the Higher Education Commission, Ministry of Education, Thailand

Ask authors/readers for more resources

Alginate microspheres were prepared by a water-in-oil emulsion solvent diffusion method. The alginate microspheres were post-cross-linked with Ca2+ ions. Influence of Ca2+ concentration on the characteristics and drug release behaviors of alginate microspheres was evaluated. Blue dextran was used as a water-soluble model drug. The non-cross-linked alginate microspheres were less than 100 mu m in size and had a spherical shape. The cross-linked alginate microspheres were also spherical in shape with a rougher surface but their particle sizes were larger than 100 mu m. The drug encapsulation efficiency of the non-cross-linked alginate microspheres was very high (82%). The drug encapsulation efficiency of alginate microspheres cross-linked with 5% and 10% Ca2+ concentrations were similar to the non-cross-linked microspheres. The in vitro drug releases of the cross-linked alginate microspheres showed prolong release profiles. The cumulative release of blue dextran decreased as the Ca2+ concentration increased. Thus, Ca2+-post-cross-linked alginate microspheres show possibility for use as controlled-release drug carriers. (C) 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Engineering, Chemical

Flower-like vaterite produced by nanobubble-containing ethanol and water mixed solution for Cd (II) removal

Yongxiang Wu, Nguyen Thi Hong Nhung, Deqian Zeng, Nengneng Luo, Akira Otsuki, Gjergj Dodbiba, Toyohisa Fujita

Summary: This study proposed a novel method for synthesizing flower-like vaterite calcium carbonate using nanobubble-containing ethanol and water mixed solution as the solvent and discussed the formation mechanism of vaterite with different shapes. The synthesized vaterite has significant practical interest in the integrated treatment of wastewater contaminated by heavy metals with effective Cd(II) removal, providing a promising field for studying heavy metal and pollutant adsorption in the liquid phase.

ADVANCED POWDER TECHNOLOGY (2024)

Article Engineering, Chemical

The effect of particle shape on the collapse characteristics of granular columns via the DEM

Jian Gong, Lipo Cheng, Ming Liu, Jie Jiang, Xiaoduo Ou

Summary: This study investigates the effects of particle shape on the collapse of granular columns using the discrete element method. The results show that particle shape has a significant impact on deposition morphology, energy evolution, and mechanical coordination number. Sphericity and angularity are identified as the most important macroscale factors, while roughness has a weaker microscale influence.

ADVANCED POWDER TECHNOLOGY (2024)