4.8 Article

Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 28, Issue 41, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201804076

Keywords

collagen; cornea; cyclodextrins; fibril alignment; self-assembly

Funding

  1. Research to Prevent Blindness
  2. National Eye Institute grant [R01 EY029055]
  3. Eyegenix LLC
  4. Morton Goldberg Professorship
  5. Wilmer Core Grant for Vision Research, Microscopy and Imaging Core Module [EY001765]

Ask authors/readers for more resources

Collagen-rich tissues in the cornea exhibit unique and highly organized extracellular matrix ultrastructures, which contribute to its high load-bearing capacity and light transmittance. Corneal collagen fibrils are controlled during development by small leucine-rich proteoglycans (SLRPs) that regulate the fibril diameter and spacing in order to achieve the unique optical transparency. Cyclodextrins (CDs) of varying size and chemical functionality for their ability to regulate collagen assembly during vitrification process are screened in order to create biosynthetic materials that mimic the native cornea structure. Addition of beta CD to collagen vitrigels produces materials with aligned fibers and lamellae similar to native cornea, resulting in mechanically robust and transparent materials. Biochemistry analysis revealed that CD interacts with hydrophobic amino acids in collagen to influence assembly and fibril organization. To translate the self-assembled collagen materials for cornea reconstruction, custom molds for gelation and vitrification are engineered to create beta CD/Col implants with curvature matching that of the cornea. Acellular beta CD/Col materials are implanted in a rabbit partial keratoplasty model with interrupted sutures. The implants demonstrate tissue integration and support re-epithelialization. Therefore, the addition of CD molecules regulates collagen self-assembly and provides a simple process to engineer corneal mimetic substitutes with advanced structural and functional properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available