4.1 Article

Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens

Journal

ADDICTION BIOLOGY
Volume 16, Issue 1, Pages 43-54

Publisher

WILEY
DOI: 10.1111/j.1369-1600.2010.00206.x

Keywords

Alcohol; astroglia; furosemide; microdialysis; NKCC1; rats

Funding

  1. Swedish Society for Medical Research
  2. Swedish Brain Foundation
  3. Swedish Medical Research Council [2006-6385, 2006-4988]
  4. Swedish Society of Medicine [2008-21390, 2009-22263]
  5. Tore Nilsons stiftelse
  6. Wilhelm and Martina Lundgrens Vetenskapsfond
  7. Fredrik och Ingrid Thurings Stiftelse
  8. Magnus Bergvalls Stiftelse
  9. Gunnar och Marta Bergendahls Stiftelse
  10. Sigurd och Elsa Goljes minne
  11. Lars Hiertas minne
  12. LUA/ALF

Ask authors/readers for more resources

Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na+/K+/2Cl- cotransporter blocker furosemide (1 mM), Na+/K+-ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl2 (50 mu M) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and beta-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 mu M) or furosemide (100 mu M or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available