4.7 Article

A hybrid fuzzy time series model based on granular computing for stock price forecasting

Journal

INFORMATION SCIENCES
Volume 294, Issue -, Pages 227-241

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2014.09.038

Keywords

Granular computing; Binning-based partition; Entropy-based discretization; Time series forecasting

Funding

  1. National Scientific Council (NSC) of the Republic of China (ROC) [NSC-101-2410-H-025-004-MY2, MOST-103-2410-H-025-022-MY2]

Ask authors/readers for more resources

Given dip high potential benefits and impacts of accurate stock market predictions, considerable research attention has been devoted to time series forecasting for stock markets. Over long periods, the accuracy of fuzzy time series model forecasting is invariably affected by interval length, and formulating effective interval partitioning methods can be very difficult. Previous studies largely relied on distance partitioning, but this approach neglects the distribution of datasets and can only handle scalar forecasting. But the magnitude of stock price movements is often severe and difficult to predict. Thus, the distribution of stock price datasets is always skewed and the straightforward partitioning method is not well suited to these types of time series datasets. In this research, a novel fuzzy time series model is used to forecast stock market prices. The proposed model is based on the granular computing approach with binning-based partition and entropy-based discretization methods. The proposed model is verified using experimental datasets from the Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX), Dow-Jones Industrial Average (DJIA), S&P 500 and IBOVESPA stock indexes, and results are compared against existing fuzzy time series models, three different SVM models, and three modern economic models - GARCH, GJR-GARCH, and Fuzzy GARCH. Compared to other current forecasting methods, the proposed models provide improved prediction accuracy and the results are verified by paired two-tailed t-tests. The experimental results clearly provide improvements for obtaining optimized linguistic intervals and ensuring the accuracy of the proposed model. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available