4.7 Article

The responsibility weighted Mahalanobis kernel for semi-supervised training of support vector machines for classification

Journal

INFORMATION SCIENCES
Volume 323, Issue -, Pages 179-198

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2015.06.027

Keywords

Support vector machine; Pattern classification; Kernel function; Responsibility weighted Mahalanobis kernel; Semi-supervised learning

Ask authors/readers for more resources

Kernel functions in support vector machines (SVM) are needed to assess the similarity of input samples in order to classify these samples, for instance. Besides standard kernels such as Gaussian (i.e., radial basis function, RBF) or polynomial kernels, there are also specific kernels tailored to consider structure in the data for similarity assessment. In this paper, we will capture structure in data by means of probabilistic mixture density models, for example Gaussian mixtures in the case of real-valued input spaces. From the distance measures that are inherently contained in these models, e.g., Mahalanobis distances in the case of Gaussian mixtures, we derive a new kernel, the responsibility weighted Mahalanobis (RWM) kernel. Basically, this kernel emphasizes the influence of model components from which any two samples that are compared are assumed to originate (that is, the responsible model components). We will see that this kernel outperforms the RBF kernel and other kernels capturing structure in data (such as the LAP kernel in Laplacian SVM) in many applications where partially labeled data are available, i.e., for semi-supervised training of SVM. Other key advantages are that the RWM kernel can easily be used with standard SVM implementations and training algorithms such as sequential minimal optimization, and heuristics known for the parametrization of RBF kernels in a C-SVM can easily be transferred to this new kernel. Properties of the RWM kernel are demonstrated with 20 benchmark data sets and an increasing percentage of labeled samples in the training data. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available