4.5 Article

Simulations of thermal conductance across tilt grain boundaries in graphene

Journal

ACTA MECHANICA SINICA
Volume 28, Issue 6, Pages 1528-1531

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10409-012-0166-8

Keywords

Graphene; Thermal conductivity; Grain boundary

Funding

  1. Science Foundation of Chinese University [2011QNA4038]
  2. Scientific Research Fund of Zhejiang Provincial Education Department [Z200906194]
  3. Science and Technology Innovative Research Team of Zhejiang Province [2009R50010]

Ask authors/readers for more resources

Non-equilibrium molecular dynamics (MD) method was performed to simulate the thermal transportation process in graphene nanoribbons (GNRs). A convenient way was conceived to introduce tilt grain boundaries (GBs) into the graphene lattice by repetitive removing C atom rows along certain directions. Comprehensive MD simulations reveal that larger-angle GBs are effective thermal barriers and substantially reduce the average thermal conductivity of GNRs. The GB thermal conductivity is 10W center dot m(-1)center dot K-1 for a bicrystal GNR with amisorientation of 21.8A degrees, which is 97% less than that of a prefect GNR with the same size. The total thermal resistance has a monotonic dependence on the density of the 5-7 defects along the GBs. A theoretical model is proposed to capture this relation and resolve the contributions by both the reduction in the phonon mean free path and the defect-induced thermal resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available