4.5 Article

Fundamental solutions of cavitation in porous solids: a comparative study

Journal

ACTA MECHANICA
Volume 224, Issue 8, Pages 1695-1707

Publisher

SPRINGER WIEN
DOI: 10.1007/s00707-013-0837-y

Keywords

-

Categories

Ask authors/readers for more resources

The expansion of internally pressurized cavities, embedded in infinite bodies, in spherical and cylindrical (plane strain and plane stress) configurations, is investigated within the framework of finite plasticity. Material response is modeled by the Gurson theory for porous solids and includes strain hardening. Numerical results, obtained under the assumption of nearly universal loading histories, reveal limit cavitation states for all three deformation patterns. Cavitation is identified with asymptotic levels of the specific cavitation energy, which is highest for the spherical cavity and smallest for plane stress (plate) holes. The influence of material porosity is assessed in context of weight optimization of protective plates. A limited comparison with experimental data for porous titanium plate perforation reveals close prediction of ballistic limit velocity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available