4.7 Article

Stress-dependent solute energetics in W-Re alloys from first-principles calculations

Journal

ACTA MATERIALIA
Volume 80, Issue -, Pages 107-117

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2014.07.028

Keywords

Applied stress; Vacancy-formation energy; Solute-migration energy; Dislocation-solute interaction; Solid-solution strengthening

Funding

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  2. DOE/OFES Early Career Program

Ask authors/readers for more resources

We present a systematic study of Re solute transport energetics in W using density functional theory calculations. The study focuses on substitutional solute diffusion in the presence of dislocation strain fields as a first step toward capturing the essential physics of solid solution hardening/softening in W-Re alloys. We calculate the heat of solution, the vacancy formation energy and the solute migration energy as functions of both hydrostatic and shear strains. Our results show that the vacancy formation energy scales with hydrostatic deformation, whereas it decreases with increasing shear strain. The migration energy decreases with hydrostatic deformation, whereas it displays path-length-dependent behavior under shear deformation. In addition, we compute the binding energies of an Re solute atom to the cores of 1/2 < 111 > screw and edge dislocations, and find the binding energy to be highest in the tensile lobe of the edge core. Finally, we obtain the dilatational stress due to a solute atom as a function of distance. Our calculations are then used to parameterize the jump rate of Re atoms in W as a function of the underlying stress state. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available