4.7 Article

Atomic-scale mechanisms of tension-compression asymmetry in a metallic glass

Journal

ACTA MATERIALIA
Volume 61, Issue 6, Pages 1843-1850

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2012.11.054

Keywords

Metallic glasses; Mechanical behavior; X-ray diffraction; Synchrotron radiation; Crystallization

Funding

  1. National Key Basic Research Program of China [2012CB825700]
  2. National Natural Science Foundation of China [50920105101, 10979002, 10904127, 51071141, 51050110136]
  3. China Postdoctoral Foundation [20090460096]
  4. Zhejiang University-Helmholtz Cooperation Fund
  5. Ministry of Education of China (Program for Changjiang Scholars)
  6. Ministry of Education of China (Research Fund for the Doctoral Program of Higher Education)
  7. Zhejiang University
  8. US National Science Foundation (NSF)
  9. Combined Research-Curriculum Development (CRCD) Program [EEC-9527527, EEC-0203415]
  10. Integrative Graduate Education and Research Training (IGERT) Program [DGE-9987548]
  11. International Materials Institutes (IMI) Program [DMR-0231320]
  12. Major Research Instrumentation (MRI) Program [DMR-0421219]
  13. Division of Civil, Mechanical, Manufacture, and Innovation Program [CMMI-0900271, CMMI-1100080]
  14. Materials World Network Program [DMR-0909037]
  15. Directorate For Engineering
  16. Div Of Civil, Mechanical, & Manufact Inn [1100080] Funding Source: National Science Foundation
  17. Division Of Materials Research
  18. Direct For Mathematical & Physical Scien [909037] Funding Source: National Science Foundation
  19. Div Of Civil, Mechanical, & Manufact Inn
  20. Directorate For Engineering [0900271] Funding Source: National Science Foundation

Ask authors/readers for more resources

Materials exhibit a tension-compression asymmetry in terms of plasticity. This phenomenon is usually interpreted by continuum mechanics, which neglects the stress-induced structure change. Here we investigated the structure change of a metallic glass of Zr46.5CU45 Al7Ti1.5 (in at.%) under both tensile and compressive stresses by in situ loading and high-energy X-ray scattering. A relationship between the stress-induced structure change and the extraordinary tension-compression asymmetry of plasticity in the metallic glass is presented. Another interesting phenomenon is that the metallic glass also exhibits tension-compression asymmetry in terms of crystallization. The influence of the stress-induced structure change on the crystallization behavior of metallic glasses is discussed. The results obtained here reveal the structure evolution of a metallic glass under both tensile and compressive stresses, and might provide a new perspective on the tension-compression asymmetry in the structure of amorphous solids. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Nanoscience & Nanotechnology

High-Performance Layered Ni-Rich Cathode Materials Enabled by Stress-Resistant Nanosheets

Hekang Zhu, Tingting Yang, Pui-Kit Lee, Zijia Yin, Yu Tang, Tianyi Li, Leighanne C. Gallington, Yang Ren, Denis Y. W. Yu, Qi Liu

Summary: A facile method is developed to synthesize porous Ni-rich materials, which exhibit high capacity and stability as cathode materials.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Nanoscience & Nanotechnology

An Innovative Insight into Performance Degradation of NCM111 Cathode Induced by Suspension of Operation

Binghao Zhang, He Zhu, Yang Ren, Hekang Zhu, Weitong Lin, Ji-Jung Kai, Tianyi Li, Leighanne C. Gallington, Jincan Ren, Yalan Huang, Si Lan, Xiaopeng Tang, Qi Liu

Summary: The lifespan of lithium-ion batteries is influenced by unpredictable and complicated operation conditions. This study shows that the pause during charging-discharging process can cause significant capacity drop and reactivates harmful phase transition, leading to performance degradation. The discontinuous usage of rechargeable batteries is identified as a key factor for cycle life.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Materials Science, Multidisciplinary

Complete and reversible magnetostructural transition driven by low magnetic field in multiferroic NiCoMnIn alloys

Yuhai Qu, Xiaoming Sun, Wanyuan Gui, Runguang Li, Zhihua Nie, Zhiyong Gao, Wei Cai, Yang Ren, Yandong Wang, Daoyong Cong

Summary: Magnetic-field-induced first-order magnetostructural transition (MFI-FOMST) has various magnetoresponsive effects, but practical applications have been limited by the high critical field. In this study, we achieved complete and reversible MFI-FOMST under a low field of 1.5 T in a prototype shape memory alloy. This was made possible by enlarging the distance between Curie transition and magnetostructural transition and manipulating the geometric compatibility between phases. The low critical field provides opportunities for low-field-induced large reversible magnetoresponsive effects and practical applications of MSMAs.

ACTA MATERIALIA (2023)

Article Chemistry, Multidisciplinary

Pre-zeolite framework super-MIEC anodes for high-rate lithium-ion batteries

Shitong Wang, Lijiang Zhao, Yanhao Dong, He Zhu, Yang Yang, Haowei Xu, Baoming Wang, Yakun Yuan, Yang Ren, Xiaojing Huang, Wei Quan, Yutong Li, Yimeng Huang, Charles M. Settens, Qi He, Yongwen Sun, Hua Wang, Zunqiu Xiao, Wenjun Liu, Xianghui Xiao, Riqiang Fu, Qiang Li, Yong S. Chu, Zhongtai Zhang, Qi Liu, Andrew M. Minor, Junying Zhang, Zilong Tang, Ju Li

Summary: Wadsley-Roth oxides (WROs) with pore diameters of 2.5 angstrom < d < 2.8 angstrom allow rapid diffusion of Li+ in single-crystal particles, enabling high-rate charge cycles similar to gasoline vehicles and improving the cycle life up to 10,000 cycles.

ENERGY & ENVIRONMENTAL SCIENCE (2023)

Article Materials Science, Ceramics

Evaluation of phase and domain switching in Sn-doped BCZT piezoceramics with coexisting ferroelectric phases

Abhijit Pramanick, Laurent Daniel, Sarangi Venkateshwarlu, Valentin Segouin, Yang Ren

Summary: Through experimental and modeling results, we have discovered a unique tetragonal-to-orthorhombic-to-tetragonal phase transformation induced under low electric fields (< 1 kV/mm) in grains with 002 crystallographic poles oriented either within 20 degrees or orthogonal to the applied electric-field direction in a polycrystalline Pb-free piezoceramic. In contrast, grains with their 002 poles oriented 30 degrees- 80 degrees to the electric-field direction undergo a continuous tetragonal-to-orthorhombic transformation for electric fields larger than 1 kV/mm. These findings highlight the critical role of a phase-transition-assisted domain switching mechanism in grains of specific orientations towards achieving a large electrostrain coefficient of d(33)* similar to 600 pm/V under low electric fields (< 1 kV/mm) in the Pb-free Sn-doped (Ba,Ca)(Zr,Ti)O-3 piezoceramic.

JOURNAL OF THE EUROPEAN CERAMIC SOCIETY (2023)

Article Nanoscience & Nanotechnology

Martensitic phase transformation induced large elastic lattice strains in Nb3Sn lamellae in NiTi-Nb3Sn eutectic composite

Yingchao Li, Junsong Zhang, Martin Saunders, Yang Ren, Hong Yang, Yinong Liu

Summary: By utilizing the principles of lattice strain matching and collective atomic load transfer, ultralarge elastic strains were induced in a brittle NiTi-Nb3Sn eutectic composite, where Nb3Sn lamellae achieved a remarkable elastic lattice strain of -2.4%. This study both tests the applicability of lattice strain matching in brittle materials and explores a novel fabrication approach for in-situ composites via eutectic solidification.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2023)

Article Environmental Sciences

The effects of urban land use on energy-related CO2 emissions in China

Tingting Kang, Han Wang, Zhangyuan He, Zhengying Liu, Yang Ren, Pengjun Zhao

Summary: This paper explores the impact of land use change on energy-related CO2 emissions using multi-dimension metrics. The results indicate that the scale of land use types has a bidirectional effect on emissions; land use mixture in mature city agglomerations has a significant suppressive effect; land use intensity is associated with emissions in most cities, with adverse effects spreading from west to northeast. Therefore, it is suggested to regulate land transaction, promote mixed land use, and utilize renewable energy to reduce energy footprints and mitigate emissions.

SCIENCE OF THE TOTAL ENVIRONMENT (2023)

Review Materials Science, Multidisciplinary

Synchrotron x-Ray Study of Heterostructured Materials: A Review

Jie Yan, Weixia Dong, Peijian Shi, Tianyi Li, Wenjun Liu, Yan-Dong Wang, Xun-Li Wang, Yuntian Zhu, Yang Ren

Summary: Heterostructured materials (HSMs) have the potential to break the strength-ductility tradeoff, but understanding their deformation physics and strengthening mechanisms is challenging due to their complex structures. Synchrotron x-rays provide powerful techniques for studying HSMs at different length scales. This article introduces in situ high-energy x-ray diffraction and Laue x-ray microdiffraction techniques and their application in studying stress partitioning, phase transformations, and deformation microstructures in HSMs.
Article Materials Science, Multidisciplinary

Correlations of multiscale structural evolution and homogeneous flows in metallic glass ribbons

Jiacheng Ge, Peng Luo, Zhenduo Wu, Wentao Zhang, Sinan Liu, Si Lan, Jonathan D. Almer, Yang Ren, Xun-Li Wang, Weihua Wang

Summary: Studying the flow behavior of amorphous solids is crucial for understanding their deformation mechanism, but detecting basic flow events in these materials is challenging. Using simultaneous SAXS/WAXS experiments, researchers have identified elementary flow carriers in wound metallic glasses, with a radius of gyration ranging from 2.5 to 3.5 nm, based on flow-induced structural heterogeneities. The size of these carriers increases and their morphology changes from spherical to rod-like during flow. Additionally, the atomic structure undergoes an unusual change to a more disordered state during winding/annealing at a temperature around 0.8 Tg. This work provides an atomic-to-nanoscale description of flow carriers in amorphous solids during deformation.

MATERIALS RESEARCH LETTERS (2023)

Article Chemistry, Physical

Enabling high-performance 4.6 V LiCoO2 in a wide temperature range via a synergetic strategy

Jincan Ren, Yu Tang, Weibao Li, Dong He, He Zhu, Xingyu Wang, Si Lan, Zijia Yin, Tingting Yang, Zhaowen Bai, Yang Ren, Xiangheng Xiao, Qi Liu

Summary: A synergetic strategy of La, Mg co-doping and LiAlO2@Al2O3 surface coating is designed to enhance the performance of LiCoO2 (CM-LCO) cathode material under extreme temperatures. CM-LCO exhibits excellent temperature adaptability and remarkable electrochemical performance, as well as excellent cycle stability and high-rate performance. The synergistic effects of this co-modification strategy are demonstrated by investigating the electrochemical reaction kinetics and structure evolution of CM-LCO, providing a promising strategy for the application of high-voltage LCO in a wide temperature range.

ECOMAT (2023)

Article Materials Science, Multidisciplinary

Laser additive manufacturing for infrastructure repair: A case study of a deteriorated steel bridge beam

Shengbiao Zhang, Peijun Hou, Jiyun Kang, Tianyi Li, Shahryar Mooraj, Yang Ren, Catherine H. Chen, A. John Hart, Simos Gerasimidis, Wen Chen

Summary: As transportation infrastructure ages, repairing damaged structures like steel bridges becomes increasingly important. This study developed a laser-based additive manufacturing method for repairing corroded beams in steel bridges. The promising potential of employing additive manufacturing for structural repair was shown, along with fundamental insights into the relationships between processing, structure, and properties in laser additive manufacturing-repaired materials.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Interplanar Ferromagnetism Enhanced Ultrawide Zero Thermal Expansion in Kagome Cubic Intermetallic (Zr,Nb)Fe2

Yanming Sun, Yili Cao, Shixin Hu, Maxim Avdeev, Chin-Wei Wang, Sergii Khmelevskyi, Yang Ren, Saul H. Lapidus, Xin Chen, Qiang Li, Jinxia Deng, Jun Miao, Kun Lin, Xiaojun Kuang, Xianran Xing

Summary: By high-temperature synthesis, researchers have achieved tunable thermal expansion in the kagome cubic (Fd-3m) intermetallic (Zr,Nb)Fe-2 materials. By magnetic doping, they have obtained a near-zero thermal expansion coefficient, which has significant applications in advanced technologies.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

Atomic Three-Dimensional Investigations of Pd Nanocatalysts for Acetylene Semi-hydrogenation

Fan Xue, Qiang Li, Mingxin Lv, Yuanfei Song, Tianxing Yang, Xiaoge Wang, Tianyi Li, Yang Ren, Koji Ohara, Yufei He, Dianqing Li, Qiheng Li, Xin Chen, Kun Lin, Xianran Xing

Summary: This study reports the local structure of Pd nanocatalysts, revealing the atomic surface distribution of unique compressed strain in Pd nanocatalysts. The surface strain, induced by the shape of the catalyst, significantly weakens the adsorption energy of ethylene and avoids the over-hydrogenation of acetylene, leading to higher selectivity for ethylene.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2023)

Article Chemistry, Multidisciplinary

High-Throughput Study of Amorphous Stability and Optical Properties of Superlattice-Like Ge-Sb-Te Thin Films

Jian Hui, Qingyun Hu, Hongjian Yuan, Ruiqian Shi, Xiang Huang, Yuanyuan Wu, Yang Ren, Zhan Zhang, Hong Wang

Summary: By using high-throughput experiments, the optical properties and structural evolution of Ge-Sb-Te alloy films were studied, and it was found that the modulation period and chemical composition have a significant impact on amorphous stability and optical properties.

SMALL (2023)

Article Materials Science, Multidisciplinary

Evolution of medium-range order and its correlation with magnetic nanodomains in Fe-Dy-B-Nb bulk metallic glasses

Jiacheng Ge, Yao Gu, Zhongzheng Yao, Sinan Liu, Huiqiang Ying, Chenyu Lu, Zhenduo Wu, Yang Ren, Jun-ichi Suzuki, Zhenhua Xie, Yubin Ke, Jianrong Zeng, He Zhu, Song Tang, Xun-Li Wang, Si Lan

Summary: Fe-based metallic glasses are promising materials in the fields of advanced magnetism and sensors. This study proposes a novel approach to tailor the amorphous structure through liquid-liquid phase transition, and provides insights into the correlation between structural disorder and magnetic order. The results show that the liquid-liquid phase transition can induce more locally ordered nanodomains, leading to stronger exchange interactions and increased saturation magnetization. The increased local heterogeneity also enhances magnetic anisotropy, resulting in a better stress-impedance effect.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2024)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)