4.7 Article

Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations

Journal

ACTA MATERIALIA
Volume 61, Issue 19, Pages 7364-7383

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2013.08.043

Keywords

Ceramics; Monoclinic; Mechanical properties; Thermal properties; First-principles calculations

Funding

  1. National Natural Science Foundation [50232020, 50572042]

Ask authors/readers for more resources

Starting from theoretical calculations based on LSDA, the authors compute the lattice parameters, cohesive energies and formation enthalpies of monazite-type REPO4 compounds. The calculated values are satisfactory compared with the experimental results from the elastic constants obtained, the mechanical moduli are evaluated using the strain-stress method. The predicted bulk, Young's and shear moduli are in good agreement with the experiments. It is shown that the mechanical moduli are low (<200 GPa) and also increase from LaPO4 to GdPO4. The three-dimensional contours and their planar projections of Young's modulus are plotted to illustrate the anisotropy in elasticity. It is found that Young's moduli of all monazite-type REPO4 show strong dependence on direction. The linear thermal expansion coefficients are calculated using the empirical method, and the values are in the range 9 x 10(-6)-12 x 10(-6) K-1. Using Clarke's and Slack's models, the thermal conductivities of REPO4 compounds obtained are close to the experimental profiles. The observed anomalies of experimental thermal properties of monazite-type GdPO4 are also explained based on the observed monazite to zircon-type transformation in experiment. Solving the Christoffel equation for monoclinic symmetry, the anisotropy in thermal conductivity is investigated. The results indicate that the total lattice thermal conductivities of monazite-type REPO4 show weak dependence on direction. Meanwhile, their sound velocities exhibit strong anisotropic properties. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Applied

The design of heterojunctions based on boron-/phosphorus-doped graphene and ZnO monolayer to enhance adsorption properties for toxic gases

Jijun Ding, Yanxin Jin, Haixia Chen, Haiwei Fu, Chao Xu, Bing Xiao

Summary: This study investigates the adsorption properties of boron- and phosphorus-doped graphene and ZnO monolayer heterojunctions. The results show that the doped heterojunctions have better adsorption characteristics compared to the undoped heterojunction. The study also suggests a new approach to regulate the electronic and adsorption properties of the heterojunctions by adjusting the gas concentration. Additionally, the study explores the possibility of opening the bandgap and forming p-n and n-n junctions through atom doping.

JOURNAL OF APPLIED PHYSICS (2022)

Article Chemistry, Physical

Mitigating the Large-Volume Phase Transition of P2-Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium-Ion Batteries

Zhiwei Cheng, Bin Zhao, Yu-Jie Guo, Lianzheng Yu, Boheng Yuan, Weibo Hua, Ya-Xia Yin, Sailong Xu, Bing Xiao, Xiaogang Han, Peng-Fei Wang, Yu-Guo Guo

Summary: This study presents a strategy based on the synergetic effect of multiple selected metal ions to improve the performance of P2-type cathodes. The results demonstrate that the contribution of multi-metal ions converts the unfavorable and large-volume phase transition into a moderate structure, leading to enhanced electrode performance. The P2-Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 composite electrode exhibits high reversible capacity, cycling stability, and rate performance, and the full cell with a hard carbon anode achieves a high energy density.

ADVANCED ENERGY MATERIALS (2022)

Article Physics, Applied

Structural evolution and thermal runaway of refractory W and Mo nanotips in the vacuum under high electric field from PIC-ED-MD simulations

Xinyu Gao, Nan Li, Andreas Kyritsakis, Mihkel Veske, Chengye Dong, Kai Wu, Bing Xiao, Flyura Djurabekova, Yonghong Cheng

Summary: In this study, multiscale-multiphysics simulations were conducted to investigate the structural evolution and thermal runaway process of W, Mo, and Cu nanotips under high electric fields. The critical electric field values for Cu, Mo, and W nanotips were predicted, and the boiling point of the metal was found to be a good indicator for the initiation of thermal runaway. The structural thermal runaway process for refractory metals like W and Mo was determined by the growth, sharpening, and thinning of small protrusions under high electric stress, while the intense atomic evaporation of Cu nanotips was caused by the ejection of large droplets generated by recrystallization and necking at the apex region.

JOURNAL OF PHYSICS D-APPLIED PHYSICS (2022)

Article Electrochemistry

Experimental and first-principles study on amorphous aluminum nitride induced island-like nucleation and planar growth of lithium metal anode

Yuting Yin, Haoliang Liu, Fei Shen, Jiadong Zuo, Hong Guo, Bing Xiao, Xiaogang Han

Summary: This study investigates the nucleation and morphology control of lithium metal deposition through experiments and calculations. It is found that, on the modified amorphous AlN-coated copper current collector, lithium metal nucleates as a two-dimensional island rather than a dendritic structure. This approach achieves smooth and uniform lithium deposition, leading to improved cycling stability and Coulombic efficiency.

ELECTROCHIMICA ACTA (2022)

Article Materials Science, Multidisciplinary

Thermodynamics for the non-conventional synthesizing of out-of-plane ordered double-transition metal 312 and 413 MAX phases (o-MAX): A high throughput linear programing first-principles calculation

Xianghui Feng, Nan Li, Baiyi Chen, Chao Zeng, Tianyu Bai, Kai Wu, Yonghong Cheng, Bing Xiao

Summary: The reaction thermodynamics for synthesizing the 312 and 413 o-MAX phases using powder metallurgy were investigated, and the validity of the method was verified by experimental results. The formability of each phase was evaluated, and it was found that the 413 o-MAX phase is less stable and less formable compared to the 312 phase. The optimal synthetic routes were predicted for all stable phases.

JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY (2023)

Article Materials Science, Ceramics

Understanding the ultralow lattice thermal conductivity of monoclinic RETaO4 from acoustic-optical phonon anti-crossing property and a comparison with ZrO2

Mengdi Gan, Xiaoyu Chong, Wei Yu, Bing Xiao, Jing Feng

Summary: Rare-earth tantalates (RETaO4) are promising thermal barrier coating (TBC) materials with low thermal conductivity, but the mechanism behind this property remains unclear. This study compares the thermal transport properties of monoclinic (m)-RETaO4 (RE = Y, Eu, Gd, Dy, Er) with ZrO2 to reveal the mechanism of low lattice thermal conductivity. The results show that strong anharmonicity and large scattering rate in m-RETaO4, derived from strong ionic bonding in the crystal structure and strong anti-crossing property of acoustic-optical phonon branches in phonon dispersion, contribute to its lower thermal conductivity compared to ZrO2. Distortion degree and stretching force constant are suggested as descriptors to screen RETaO4 with relatively lower thermal conductivity.

JOURNAL OF THE AMERICAN CERAMIC SOCIETY (2023)

Article Physics, Applied

Atomic structure evolution and linear regression fitting models for pre-breakdown electric field strength of FCC, BCC and HCP metal nano-emitters under high electric field from PIC-ED-MD simulations

Xinyu Gao, Nan Li, Zifeng Song, Kai Wu, Yonghong Cheng, Bing Xiao

Summary: Multi-scale and multi-physics simulations were conducted to investigate nano-emitters composed of FCC (Al, Cu and Au), BCC (V, Mo and W) and HCP (Ti, Zn and Zr) metals, using hybrid electrodynamics coupled with molecular dynamics-particle in cell simulations (PIC-ED-MD). It was found that the tilting of the nano-emitter at low temperature and small electric field (E-field) is mainly caused by the movement of partial dislocations or elastic local distortions of atomic registries. At high E-field, resistive heating leads to direct melting of the nano-emitter apex. The critical E-field strength of metal nano-emitters is strongly correlated with structural parameters, thermodynamic quantities and phase transition temperatures, allowing for the prediction of critical E-field values using linear fitting or regression models.

JOURNAL OF PHYSICS D-APPLIED PHYSICS (2023)

Article Chemistry, Multidisciplinary

Violet Antimony Phosphorus with Enhanced Photocatalytic Hydrogen Evolution

Xuewen Zhao, Mengyue Gu, Rui Zhai, Yuhao Zhang, Mengting Jin, Yanhao Wang, Jiangfan Li, Yonghong Cheng, Bing Xiao, Jinying Zhang

Summary: Recently confirmed violet phosphorus (VP) has unique photoelectric, mechanical, and photocatalytic properties. By substituting antimony for some phosphorus atoms in VP crystals, the physical and chemical properties are modified, resulting in significantly enhanced photocatalytic hydrogen evolution performance.

SMALL (2023)

Article Chemistry, Physical

Integrated electrolyte regulation strategy: Trace trifunctional tranexamic acid additive for highly reversible Zn metal anode and stable aqueous zinc ion battery

Junyi Yin, Haoliang Liu, Peng Li, Xiang Feng, Minghui Wang, Chenyang Huang, Mingyan Li, Yaqiong Su, Bing Xiao, Yonghong Cheng, Xin Xu

Summary: Aqueous zinc ion batteries (AZIBs) are gaining increasing attention for large-scale energy storage systems due to their safety, low cost, and scalability. Unfortunately, the use of zinc metal anode in AZIBs is hindered by side reactions, dendrite growth, and hydrogen evolution. In this study, the introduction of trifunctional tranexamic acid (TXA) into the electrolyte is proposed to enhance the anode/electrolyte interface and regulate the solvation structure of zinc ions. The experimental and simulation results demonstrate the crucial role of TXA in controlling the anode interface chemistry and electrolyte environment, leading to improved performance and stability of AZIBs.

ENERGY STORAGE MATERIALS (2023)

Article Computer Science, Interdisciplinary Applications

Thermo-lp: A computational tool to evaluate reaction thermodynamics for synthesizing Mn+1AXn (MAX) phases based on linear programming optimization method

Xianghui Feng, Nan Li, Kai Wu, Yonghong Cheng, Bing Xiao

Summary: Thermo-lp is a computational program that evaluates the thermodynamic formability of MAX phases at finite temperature. It uses phonon density of states and electron density of states as inputs to calculate the Gibbs free energy. Thermo-lp employs linear programing optimization algorithm to assess the thermodynamic stability and optimize the synthetic pathways. The program's capabilities are demonstrated using the example of Cr2TiAlC2 o-MAX compound.

COMPUTER PHYSICS COMMUNICATIONS (2023)

Article Chemistry, Physical

Screening of 225 Double-Transition-Metal o-MXenes for Superior Thermoelectric Property at Room Temperature from First-Principles Electron and Phonon Calculations

Ziang Jing, Xianghui Feng, Yiding Qiu, Nan Li, Kai Wu, Yonghong Cheng, Bing Xiao

Summary: Through high-throughput experiments, we have successfully predicted the electrical and thermal conductivities of double-transition-metal o-MXenes. 225 double-transition-metal o-MXenes with different combinations, surface terminations, and structural types were calculated. It was found that the electrical conductivities of all investigated o-MXenes were in the range of 10(5) to 10(7) S/m, indicating their good electron conductivity. In terms of thermal conductivity, surface functionalized o-MXenes were dominated by electron thermal conduction, while lattice thermal conductivity was comparable to electron thermal conduction in intrinsic o-MXenes. Surface terminations had a significant influence on phonon and electron transport properties. O-termination tended to produce semiconducting o-MXenes, while OH-termination effectively reduced the lattice thermal conductivity of o-MXenes. Dozens of o-MXenes were predicted to be potentially excellent thermoelectric materials for the first time, with Seebeck coefficients higher than 100μV/K and ZT values larger than 0.5 at room temperature.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Physics, Multidisciplinary

Self-consistent numerical solution of quantum regime with exchange-correlation effects of space charges for electron field emission in a nano-gap

Nan Li, Kai Wu, Yonghong Cheng, Bing Xiao

Summary: In this work, the quantum effects of space charge on electron field emission in metal-vacuum-metal nanogaps were studied. A self-consistent solution of the one-dimensional Poisson-Schrodinger equation and the Wentzel-Kramers-Brillouin-Jeffreys model was obtained using an in-house software. The effects of space charge field components and exchange-correlation functionals on the field emission characteristics were analyzed for different emission regimes.

FRONTIERS IN PHYSICS (2023)

Article Chemistry, Multidisciplinary

Unlocking Catalytic Potential: Encasing CoP Nanoparticles within Mesoporous CoFeP Nanocubes for Enhanced Oxygen Evolution Reaction

Lei Fu, Jun Zhou, Zilin Zhou, Bing Xiao, Nithima Khaorapapong, Yunqing Kang, Kai Wu, Yusuke Yamauchi

Summary: Efficient and durable electrocatalysts made from nanosized nonprecious-metal-based materials have gained attention for their potential use in the oxygen evolution reaction (OER). In this study, CoP nanoparticles enclosed within a CoFeP shell (CoP/CoFeP) were fabricated. The CoFeP shell with a mesoporous structure allows for effective mass transport, abundant active sites, and accessibility of the hybrid interfaces between CoP and CoFeP. As a result, the encapsulated CoP/CoFeP nanocubes demonstrate excellent OER catalytic activity, outperforming reference hollow CoFeP nanocubes and commercial RuO2. Experimental characterization and theoretical calculations indicate that the CoP/CoFeP structure with a Fe-doped shell facilitates electronic interactions between CoP and CoFeP, and promotes structural reconstruction, exposing more active sites and enhancing the OER performance. This study aims to inspire further research on nonprecious-metal catalysts with tailored nanostructures and electronic properties for the OER.

ACS NANO (2023)

Article Nanoscience & Nanotechnology

Electronic States Tailoring and Pinning Effect Boost High-Power Sodium-Ion Storage of Oriented Hollow P2-Type Cathode Materials

Mengting Liu, Bin Wu, Duo Si, Haojie Dong, Kai Chen, Lu Zheng, Xin-Yu Fan, Lianzheng Yu, Bing Xiao, Shulei Chou, Yao Xiao, Peng-Fei Wang

Summary: By substituting Mg2+ for Na0.67Ni0.33Mn0.67O2 and forming hollow rodlike structures, the structure stability and sodium ion diffusion dynamics of P2-type NaxTMO2 can be improved, leading to enhanced rate capability and cycling stability for sodium-ion storage.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Prediction of boridenes as high-performance anodes for alkaline metal and alkaline Earth metal ion batteries

Baiyi Chen, Haoliang Liu, Tianyu Bai, Zifeng Song, Jinan Xie, Kai Wu, Yonghong Cheng, Bing Xiao

Summary: We conducted a comprehensive density functional theory investigation on the structural stability and electrochemical properties of boridenes as anode materials in rechargeable alkaline (earth) metal-ion batteries. The results show that Mo4/3B2 and Mo4/3B2O2 monolayers can accommodate various metal ions and form stable multi-layer adsorption structures. The bare Mo4/3B2 monolayer exhibits higher gravimetric capacities than Mo4/3B2O2 monolayer.

NANOSCALE (2022)

Article Materials Science, Multidisciplinary

Transmission electron microscopy of the rapid solidification microstructure evolution and solidification interface velocity determination in hypereutectic Al-20at.%Cu after laser melting

Y. Liu, K. Zweiacker, C. Liu, J. T. McKeown, J. M. K. Wiezorek

Summary: The evolution of rapid solidification microstructure and solidification interface velocity of hypereutectic Al-20at.%Cu alloy after laser melting has been studied experimentally. It was found that the formation of microstructure was dominated by eutectic, alpha-cell, and banded morphology grains, and the growth modes changed with increasing interface velocity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Mechanisms for high creep resistance in alumina forming austenitic (AFA) alloys

Bharat Gwalani, Julian Escobar, Miao Song, Jonova Thomas, Joshua Silverstein, Andrew Chihpin Chuang, Dileep Singh, Michael P. Brady, Yukinori Yamamoto, Thomas R. Watkins, Arun Devaraj

Summary: Castable alumina forming austenitic alloys exhibit superior creep life and oxidation resistance at high temperatures. This study reveals the mechanism behind the enhanced creep performance of these alloys by suppressing primary carbide formation and offers a promising alloy design strategy for high-temperature applications.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Achieving atomically flat copper surface: Formation of mono-atomic steps and associated strain energy mechanisms

Jian Song, Qi Zhang, Songsong Yao, Kunming Yang, Houyu Ma, Jiamiao Ni, Boan Zhong, Yue Liu, Jian Wang, Tongxiang Fan

Summary: Recent studies have shown that achieving an atomically flat surface for metals can greatly improve their oxidation resistance and enhance their electronic-optical applications. Researchers have explored the use of graphene as a covering layer to achieve atomically flat surfaces. They found that high-temperature deposited graphene on copper surfaces formed mono-atomic steps, while annealed copper and transferred graphene on copper interfaces formed multi-atomic steps.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Modeling and measurements of creep deformation in laser-melted Al-Ti-Zr alloys with bimodal grain size

Jennifer A. Glerum, Jon-Erik Mogonye, David C. Dunand

Summary: Elemental powders of Al, Ti, Sc, and Zr are blended and processed via laser powder-bed fusion to create binary and ternary alloys. The microstructural analysis and mechanical testing show that the addition of Ti results in the formation of primary precipitates, while the addition of Sc and Zr leads to the formation of fine grain bands. The Al-0.25Ti-0.25Zr alloy exhibits comparable strain rates to Al-0.5Zr at low stresses, but significantly higher strain rates at higher stresses during compressive creep testing. Finite element modeling suggests that the connectivity of coarse and fine grain regions is a critical factor affecting the creep resistance of the alloys.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Characterizing stable nanocrystalline Cu-Ta behavior and failure dynamics under extremes of strain rate, strain, temperature and pressure by modified dynamic tensile extrusion

P. Jannotti, B. C. Hornbuckle, J. T. Lloyd, N. Lorenzo, M. Aniska, T. L. Luckenbaugh, A. J. Roberts, A. Giri, K. A. Darling

Summary: This work characterizes the thermo-mechanical behavior of bulk nanocrystalline Cu-Ta alloys under extreme conditions. The experiments reveal that the alloys exhibit unique mechanical properties, behaving differently from conventional nanocrystalline Cu. They do not undergo grain coarsening during extrusion and exhibit behavior similar to coarse-grained Cu.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Yiqing Wei, Jingwei Li, Daliang Zhang, Bin Zhang, Zizhen Zhou, Guang Han, Guoyu Wang, Carmelo Prestipino, Pierric Lemoine, Emmanuel Guilmeau, Xu Lu, Xiaoyuan Zhou

Summary: This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Jia Chen, Zhengyu Zhang, Eitan Hershkovitz, Jonathan Poplawsky, Raja Shekar Bhupal Dandu, Chang-Yu Hung, Wenbo Wang, Yi Yao, Lin Li, Hongliang Xin, Honggyu Kim, Wenjun Cai

Summary: In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Rate-dependent transition of dislocation mechanisms in a magnesium alloy

X. Y. Xu, C. P. Huang, H. Y. Wang, Y. Z. Li, M. X. Huang

Summary: The limited slip systems of magnesium (Mg) and its alloys hinder their wide applications. By conducting tensile straining experiments, researchers discovered a rate-dependent transition in the dislocation mechanisms of Mg alloys. At high strain rates, glissile dislocations dominate, while easy-glide dislocations dominate at low strain rates. Abundant glissile dislocations do not necessarily improve ductility.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of temperature on detwinning and mechanical properties of face-centered cubic deformation twins

M. S. Szczerba, M. J. Szczerba

Summary: Inverse temperature dependences of the detwinning stress were observed in face-centered cubic deformation twins in Cu-8at.%Al alloy. The detwinning stress increased with temperature when the pi detwinning mode was involved, but decreased when the pi/3 mode was involved. The dual effect of temperature on the detwinning stress was due to the reduction of internal stresses pre-existing within the deformation twins. The complete reduction of internal stresses at about 530 degrees C led to the equivalence of the critical stresses of different detwinning modes and a decrease in the yield stress anisotropy of the twin/matrix structure.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Taowen Dong, Tingting Qin, Wei Zhang, Yaowen Zhang, Zhuoran Feng, Yuxiang Gao, Zhongyu Pan, Zixiang Xia, Yan Wang, Chunming Yang, Peng Wang, Weitao Zheng

Summary: The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Grain scale bursts of plasticity in Mg-4Zn via high energy X-rays: Towards twin observation in real-time

Matthew R. Barnett, Jun Wang, Sitarama R. Kada, Alban de Vaucorbeil, Andrew Stevenson, Marc Fivel, Peter A. Lynch

Summary: The elastic-plastic transition in magnesium alloy Mg-4.5Zn exhibits bursts of deformation, which are characterized by sudden changes in grain orientation. These bursts occur in a coordinated manner among nearby grains, with the highest burst rate observed at the onset of full plasticity. The most significant burst events are associated with twinning, supported by the observation of twinned structures using electron microscopy. The bursts are often preceded and followed by a stasis in peak movement, indicating a certain "birth size" for twins upon formation and subsequent growth at a later stage.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Atomistic simulations and machine learning of solute grain boundary segregation in Mg alloys at finite temperatures

Vaidehi Menon, Sambit Das, Vikram Gavini, Liang Qi

Summary: Understanding solute segregation thermodynamics is crucial for investigating grain boundary properties. The spectral approach and thermodynamic integration methods can be used to predict solute segregation behavior at grain boundaries and compare with experimental observations, thus aiding in alloy design and performance control.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Integrating abnormal thermal expansion and ultralow thermal conductivity into (Cd,Ni)2Re2O7 via synergy of local structure distortion and soft acoustic phonons

Feiyu Qin, Lei Hu, Yingcai Zhu, Yuki Sakai, Shogo Kawaguchi, Akihiko Machida, Tetsu Watanuki, Yue-Wen Fang, Jun Sun, Xiangdong Ding, Masaki Azuma

Summary: This study reports on the negative and zero thermal expansion properties of Cd2Re2O7 and Cd1.95Ni0.05Re2O7 materials, along with their ultra-low thermal conductivity. Through investigations of their structures and phonon calculations, the synergistic effect of local structure distortion and soft phonons is revealed as the key to achieving these distinctive properties.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

Semi-automatic miniature specimen testing method to characterize the plasticity and fracture properties of metals

Thomas Beerli, Christian C. Roth, Dirk Mohr

Summary: A novel testing system for miniature specimens is designed to characterize the plastic response of materials for which conventional full-size specimens cannot be extracted. The system has an automated operation process, which reduces the damage to specimens caused by manual handling and improves the stability of the test results. The experiments show that the miniature specimens extracted from stainless steel and aluminum have high reproducibility, and the results are consistent with those of conventional-sized specimens. A correction procedure is provided to consider the influence of surface roughness and heat-affected zone caused by wire EDM.

ACTA MATERIALIA (2024)

Article Materials Science, Multidisciplinary

The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films

Rani Mary Joy, Paulius Pobedinskas, Nina Baule, Shengyuan Bai, Daen Jannis, Nicolas Gauquelin, Marie-Amandine Pinault-Thaury, Francois Jomard, Kamatchi Jothiramalingam Sankaran, Rozita Rouzbahani, Fernando Lloret, Derese Desta, Jan D'Haen, Johan Verbeeck, Michael Frank Becker, Ken Haenen

Summary: This study investigates the influence of film microstructure and composition on the Young's modulus and residual stress in nanocrystalline diamond thin films. The results provide insights into the mechanical properties and intrinsic stress sources of these films, and demonstrate the potential for producing high-quality nanocrystalline diamond films under certain conditions.

ACTA MATERIALIA (2024)