4.2 Article

Evaluation of Alcoholic-Assisted Dispersive Liquid-Liquid Microextraction of Bisphenol A in Water Samples Using an Experimental Design

Journal

ACTA CHROMATOGRAPHICA
Volume 26, Issue 3, Pages 401-412

Publisher

AKADEMIAI KIADO ZRT
DOI: 10.1556/AChrom.26.2014.3.1

Keywords

alcoholic-assisted dispersive liquid-liquid microextraction; bisphenol A; high-performance liquid chromatography; central composite face-centered

Ask authors/readers for more resources

Alcoholic-assisted dispersive liquid-liquid microextraction method (AA-DLLME) is used for the extraction, purification, and determination of bisphenol A in water samples by HPLC-UV. 1-octanol and methanol were selected as extraction and dispersive solvents of AA-DLLME procedure. The effects of several parameters of the AA-DLLME procedure (such as volume of extraction and dispersive solvents, amount of salt in sample solution, and extraction time) were investigated by a full factorial design. Then, the levels of significant factors were optimized using a central composite face-centered. The optimum conditions were obtained at 158 mu L of extraction solvent, 500 mu L of dispersive solvent, 1 min extraction time, and addition of 22% (w/v) of NaCl to the sample solution. Under optimum condition, the extraction recovery and the enrichment factor were determined, which were 91% and 65%, respectively. At these conditions, the limit of detection and the linearity were 0.10 and 1-100 mu g L-1, respectively. The relative standard deviations for intra-and inter-day of extraction of bisphenol A (BPA) were 6.98% and 9.80%, respectively (for five measurements). Finally, the method was successfully applied for the determination of BPA in environmental water samples. In conclusion, it can be stated that the applied method is fast, simple, and environmentally friendly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available