4.8 Article

Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair

Journal

ACTA BIOMATERIALIA
Volume 8, Issue 2, Pages 677-685

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.actbio.2011.10.007

Keywords

Polymer grafts; Meniscus repair; Hyaluronic acid; Polyglycolic acid; Scaffold-based cultures

Ask authors/readers for more resources

Treatment options for lesions of the avascular region of the meniscus using regenerative medicine approaches based on resorbable scaffolds are rare. Recent approaches using scaffold-based techniques for tissue regeneration known from cartilage repair may be a promising treatment option for meniscal tears. The aim of the study was the investigation of meniscus matrix formation of in vitro expanded human meniscus-derived cells in a three-dimensional (3-D) bioresorbable polymer graft for meniscal repair approaches. Cultivation of the human meniscus cells was performed in a resorbable scaffold material made of polyglycolic acid (PGA) and hyaluronic acid, stabilized with fibrin glue. Cell viability and distribution of human meniscus cells in PGA-hyaluronan scaffolds were evaluated by fluorescein diacetate and propidium iodide staining. Verification of typical meniscal extracellular matrix molecules like type I and type III collagen was performed histologically, immunohistochemically and by gene expression analysis. In results, 3-D scaffold-based meniscus cultures showed high cell viability over an observational period of 21 days in PGA-hyaluronan scaffolds. On the protein level, type! collagen and proteoglycans were evident. Gene expression analysis confirmed the re-expression of meniscus-specific markers in PGA-hyaluronan scaffolds. This study demonstrated that in vitro expanded human meniscus cells allow for formation of meniscal matrix components when cultured in 3-D PGA-hyaluronan scaffolds stabilized with fibrin. These results encourage scaffold-based approaches for the treatment of meniscal lesions. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available