4.5 Article

Two genes, rif15 and rif16, of the rifamycin biosynthetic gene cluster in Amycolatopsis mediterranei likely encode a transketolase and a P450 monooxygenase, respectively, both essential for the conversion of rifamycin SV into B

Journal

ACTA BIOCHIMICA ET BIOPHYSICA SINICA
Volume 43, Issue 12, Pages 948-956

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/abbs/gmr091

Keywords

Amycolatopsis mediterranei; rifamycin; P450; transketolase

Funding

  1. National Natural Science Foundation of China [30830002]

Ask authors/readers for more resources

Amycolatopsis mediterranei produces an important antibiotic rifamycin, the biosynthesis of which involves many unusual modifications. Previous work suggested a putative P450 enzyme encoded by rif16 within the rifamycin biosynthetic gene cluster (rif) was required for the conversion of the intermediate rifamycin SV into the end product rifamycin B. In this study, we genetically proved that a putative transketolase encoded by rif15 is another essential enzyme for this conversion. Expression of merely rif15 and rif16 in a rif cluster null mutant of A. mediterranei U32 was able to convert rifamycin SV into B. However, this Rif15- and Rif16-mediated conversion was only detected in intact cells of A. meidterranei, but not in Streptomyce coelicolor or Mycobacterium smegmatis, suggesting that yet-characterized gene(s) in A. mediterranei other than those encoded by the rif cluster should be involved in this process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available