4.6 Article Proceedings Paper

Decrease of contractile properties and transversal stiffness of single fibers in human soleus after 7-day dry immersion

Journal

ACTA ASTRONAUTICA
Volume 68, Issue 9-10, Pages 1478-1485

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actaastro.2010.01.012

Keywords

Dry immersion; Muscle fiber; Contractile properties; Transversal stiffness; Atomic force microscopy

Ask authors/readers for more resources

The simulation model of dry immersion was used to evaluate the effects of plantar mechanical stimulation (PMS) and high frequency electromyostimulation (EMS) on the mechanical properties of human soleus fibers under the conditions of gravitational unloading. We examined contractile properties of single fibers by means of tensometry, transversal stiffness of sarcolemma and different areas of the contractile apparatus by means of atomic force microscopy. It was shown that there is a reduction of transversal stiffness in single muscle fibers under hypogravitational conditions. Application of different countermeasures could compensate this effect. Meanwhile pneumostimulation and electro stimulation act in quite different way. Therefore, pneumostimulation seems to be more effective. The data obtained can be considered as the evidence of the fact that such countermeasures as PMS and electromyostimulation influence on muscle fibers in quite different ways and PMS efficiency is likely to be higher. On the basis of our experimental data on transverse stiffness of mechanotransductional nodes and the contractile apparatus, we can assume that support stimulation allows prevention of destructive processes in muscle fibers. Electrostimulation seems to stimulate contractile activity only without suppression of impairment of the fiber mechanical properties. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available