4.6 Article

A passive, sun-pointing, millimeter-scale solar sail

Journal

ACTA ASTRONAUTICA
Volume 67, Issue 1-2, Pages 108-121

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actaastro.2009.12.008

Keywords

Solar sails; Solar radiation pressure; Spacecraft scaling; Microsystems

Funding

  1. National Defense Science Engineering Graduate Fellowship
  2. NASA Institute for Advanced Concepts [07605-003-071]
  3. Sandia National Laboratories
  4. Department of Energy
  5. National Science Foundation [ECS-0335765]

Ask authors/readers for more resources

Taking inspiration from the orbital dynamics of dust, we find that spacecraft length scaling is a means of enabling infinite-impulse orbits that require no feedback control. Our candidate spacecraft is a 25 mu m thick, 1 cm square silicon chip equipped with signal transmitting circuitry. This design reduces the total mass to less than 7.5 mg and enables the spacecraft bus itself to serve as a solar sail with characteristic acceleration on the order of 0.1 mm/s(2). It is passive in that it maneuvers with no closed-loop actuation of orbital or attitude states. The unforced dynamics that result from an insertion orbit and a launch-vehicle separation determine its subsequent state evolution. We have developed a system architecture that uses solar radiation torques to maintain a sun-pointing heading and can be fabricated with standard microfabrication processes. This architecture has potential applications in heliocentric, geocentric, and three-body orbits. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available