4.8 Article

Mechanosensation-Active Matrix Based on Direct-Contact Tribotronic Planar Graphene Transistor Array

Journal

ACS NANO
Volume 12, Issue 9, Pages 9381-9389

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.8b04490

Keywords

electronic skin; graphene transistor; direct-contact tribotronic devices; mechanosensation; triboelectric nanogenerator

Funding

  1. National Key Research and Development Program of China [2016YFA0202703, 2016YFA0202704]
  2. National Natural Science Foundation of China [51605034, 51711540300, 51475099]
  3. Hundred Talents Program of the Chinese Academy of Science
  4. Thousand Talents Program of China for Pioneering Researchers and Innovative Teams
  5. State Key Laboratory of Precision Measuring Technology and Instruments (Tianjin University)
  6. Center for Advanced Soft Electronics (CASE) under the Global Frontier Research Program [2013M3A6A5073177]

Ask authors/readers for more resources

Mechanosensitive electronics aims at replicating the multifunctions of human skin to realize quantitative conversion of external stimuli into electronic signals and provide corresponding feedback instructions. Here, we report a mechanosensation-active matrix based on a direct-contact tribotronic planar graphene transistor array. Ion gel is utilized as both the dielectric in the graphene transistor and the friction layer for triboelectric potential coupling to achieve highly efficient gating and sensation properties. Different contact distances between the ion gel and other friction materials produce different triboelectric potentials, which are directly coupled to the graphene channel and lead to different output signals through modulating the Fermi level of graphene. Based on this mechanism, the tribotronic graphene transistor is capable of sensing approaching distances, recognizing the category of different materials, and even distinguishing voices. It possesses excellent sensing properties, including high sensitivity (0.16 mm(-1)), fast response time (similar to 15 ms), and excellent durability (over 1000 cycles). Furthermore, the fabricated mechanosensation-active matrix is demonstrated to sense spatial contact distances and visualize a 2D color mapping of the target object. The tribotronic active matrix with ion gel as dielectric/friction layer provides a route for efficient and low-power-consuming mechanosensation in a noninvasive fashion. It is of great significance in multifunction sensory systems, wearable human-machine interactive interfaces, artificial electronic skin, and future telemedicine for patient surveillance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available