4.8 Article

Effect of Oxygen, Moisture and Illumination on the Stability and Reliability of Dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) OTFTs during Operation and Storage

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 17, Pages 15224-15231

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am503560d

Keywords

DNTT; environmental stability; bias stress; OTEFs

Funding

  1. Engineering and Physical Sciences Research Council through the Innovative Electronics Manufacturing Research Centre, Loughborough, UK [FS/01/01/10]
  2. Engineering and Physical Sciences Research Council [EP/H03014X/1] Funding Source: researchfish
  3. EPSRC [EP/H03014X/1] Funding Source: UKRI

Ask authors/readers for more resources

We report a systemic study of the stability of organic thin film transistors (OTFTs) both in storage and under operation. Apart from a thin polystyrene buffer layer spin-coated onto the gate dielectric, the constituent parts of the OTFTs were all prepared by vacuum evaporation. The OTFTs are based on the semiconducting small molecule dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) deposited onto the surface of a polystyrene-buffered in situ polymerized diacrylate gate insulator. Over a period of 9 months, no degradation of the hole mobility occurred in devices stored either in the dark in dry air or in uncontrolled air and normal laboratory fluorescent lighting conditions. In the latter case, rather than decreasing, the mobility actually increased almost 2-fold to 1.5 cm(2)/(V.s). The devices also showed good stability during repeat on/off cycles in the dark in dry air. Exposure to oxygen and light during the on/off cycles led to a positive shift of the transfer curves due to electron trapping when the DNTT was biased into depletion by the application of positive gate voltage. When operated in accumulation, negative gate voltage under the same conditions, the transfer curves were stable. When voltage cycling in moist air in the dark, the transfer curves shifted to negative voltages, thought to be due to the generation of hole traps either in the semiconductor or its interface with the dielectric layer. When subjected to gate bias stress in dry air in the dark for at least 144 h, the device characteristics remained stable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available