4.8 Article

One-Step Solution Immersion Process to Fabricate Superhydrophobic Surfaces on Light Alloys

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 5, Issue 20, Pages 9867-9871

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am402303j

Keywords

superhydrophobicity; light alloys; one-step process

Funding

  1. National Natural Science Foundation of China [21203089, 51263018]
  2. International S&T Cooperation Program of China [2012DFA51200]

Ask authors/readers for more resources

A simple and universal one-step process bas been developed to render light alloys (including AZ91D Mg alloy, 5083 Al alloy, and TC4 Ti alloy) superhydrophobic by immersing the substrates in a solution containing low-surface-energy molecules of 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS, 20 mu L), ethanol (10 mL), and H2O (10 mL for Al and Mg alloy)/H2O2 (15%, 10 mL for Ti alloy). Field-emission scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle measurements have been performed to characterize the morphological features, chemical composition, and wettability of the surfaces, respectively. The results indicate that the treated light alloys are rough-structured and covered by PFOTS molecules; consequently, the surfaces show static contact angles higher than 150 degrees and sliding angles lower than 10 degrees. This research reveals that it is feasible to fabricate superhydrophobic surfaces (SHS) easily and effectively without involving the traditional two-step processes. Moreover, this one-step process may find potential application in the field of industrial preparation of SHS because of its simplicity and universality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available