4.5 Article

Understanding Transportation Modes Based on GPS Data for Web Applications

Journal

ACM TRANSACTIONS ON THE WEB
Volume 4, Issue 1, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/1658373.1658374

Keywords

Algorithm; Design; Experimentation; Spatial data mining; GPS trajectory; ubiquitous computing; understanding user behavior; GeoLife; user mobility; transportation modes

Ask authors/readers for more resources

User mobility has given rise to a variety of Web applications, in which the global positioning system (GPS) plays many important roles in bridging between these applications and end users. As a kind of human behavior, transportation modes, such as walking and driving, can provide pervasive computing systems with more contextual information and enrich a user's mobility with informative knowledge. In this article, we report on an approach based on supervised learning to automatically infer users' transportation modes, including driving, walking, taking a bus and riding a bike, from raw GPS logs. Our approach consists of three parts: a change point-based segmentation method, an inference model and a graph-based post-processing algorithm. First, we propose a change point-based segmentation method to partition each GPS trajectory into separate segments of different transportation modes. Second, from each segment, we identify a set of sophisticated features, which are not affected by differing traffic conditions ( e. g., a person's direction when in a car is constrained more by the road than any change in traffic conditions). Later, these features are fed to a generative inference model to classify the segments of different modes. Third, we conduct graph-based postprocessing to further improve the inference performance. This postprocessing algorithm considers both the commonsense constraints of the real world and typical user behaviors based on locations in a probabilistic manner. The advantages of our method over the related works include three aspects. ( 1) Our approach can effectively segment trajectories containing multiple transportation modes. ( 2) Our work mined the location constraints from user-generated GPS logs, while being independent of additional sensor data and map information like road networks and bus stops. ( 3) The model learned from the dataset of some users can be applied to infer GPS data from others. Using the GPS logs collected by 65 people over a period of 10 months, we evaluated our approach via a set of experiments. As a result, based on the change-point-based segmentation method and Decision Tree-based inference model, we achieved prediction accuracy greater than 71 percent. Further, using the graph-based post-processing algorithm, the performance attained a 4-percent enhancement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available