4.6 Article

Elucidation of Arctigenin Pharmacokinetics After Intravenous and Oral Administrations in Rats: Integration of In Vitro and In Vivo Findings via Semi-mechanistic Pharmacokinetic Modeling

Journal

AAPS JOURNAL
Volume 16, Issue 6, Pages 1321-1333

Publisher

SPRINGER
DOI: 10.1208/s12248-014-9664-x

Keywords

arctigenic acid; arctigenin; arctigenin-4 '-O-glucuronide; pharmacokinetics; semi-mechanistic pharmacokinetic modeling

Funding

  1. Chinese University of Hong Kong [3800005]
  2. Health Authority of Hong Kong [7010213]

Ask authors/readers for more resources

Although arctigenin (AR) has attracted substantial research interests due to its promising and diverse therapeutic effects, studies regarding its biotransformation were limited. The current study aims to provide information regarding the pharmacokinetic properties of AR via various in vitro and in vivo experiments as well as semi-mechanistic pharmacokinetic modeling. Our in vitro rat microsome incubation studies revealed that glucuronidation was the main intestinal and liver metabolic pathway of AR, which occurred with V (max), K (m), and Cl-int of 47.5 +/- 3.4 nmol/min/mg, 204 +/- 22 mu M, and 233 +/- 9 mu l/min/mg with intestinal microsomes and 2.92 +/- 0.07 nmol/min/mg, 22.7 +/- 1.2 mu M, and 129 +/- 4 mu l/min/mg with liver microsomes, respectively. In addition, demethylation and hydrolysis of AR occurred with liver microsomes but not with intestinal microsomes. In vitro incubation of AR and its metabolites in intestinal content demonstrated that glucuronides of AR excreted in bile could be further hydrolyzed back to the parent compound, suggesting its potential enterohepatic circulation. Furthermore, rapid formation followed by fast elimination of arctigenic acid (AA) and arctigenin-4'-O-glucuronide (AG) was observed after both intravenous (IV) and oral administrations of AR in rats. Linear pharmacokinetics was observed at three different doses for AR, AA, and AG after IV administration of AR (0.48-2.4 mg/kg, r (2) > 0.99). Finally, an integrated semi-mechanistic pharmacokinetic model using in vitro enzyme kinetic and in vivo pharmacokinetic parameters was successfully developed to describe plasma concentrations of AR, AA, and AG after both IV and oral administration of AR at all tested doses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available