4.6 Article

Co-Delivery of Autoantigen and B7 Pathway Modulators Suppresses Experimental Autoimmune Encephalomyelitis

Journal

AAPS JOURNAL
Volume 16, Issue 6, Pages 1204-1213

Publisher

SPRINGER
DOI: 10.1208/s12248-014-9671-y

Keywords

antigen-specific immunotherapy; B7/CD28:CTLA-4 co-stimulatory pathway; experimental autoimmune encephalomyelitis (EAE); proteolipid peptide; soluble antigen array

Funding

  1. NIH [1R56AI091996-01A1]
  2. KINBRE [P20 RR016475/P20 GM103418]
  3. American Foundation for Pharmaceutical Education (AFPE) Pre-Doctoral Fellowship in Clinical Pharmaceutical Science
  4. Takeru Higuchi Graduate Fellowship (University of Kansas)

Ask authors/readers for more resources

Autoimmune diseases such as multiple sclerosis (MS) are characterized by the breakdown of immune tolerance to autoantigens. Targeting surface receptors on immune cells offers a unique strategy for reprogramming immune responses in autoimmune diseases. The B7 signaling pathway was targeted using adaptations of soluble antigen array (SAgA) technology achieved by covalently linking B7-binding peptides and disease causing autoantigen (proteolipid peptide (PLP)) to hyaluronic acid (HA). We hypothesized that co-delivery of a B7-binding peptide and autoantigen would suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Three independent B7-targeted SAgAs were created containing peptides to either inhibit or potentially stimulate the B7 signaling pathway. Surprisingly, all SAgAs were found to suppress EAE disease symptoms. Altered cytokine expression was observed in primary splenocytes isolated from SAgA-treated mice, indicating that SAgAs with different B7-binding peptides may suppress EAE through different immunological mechanisms. This antigen-specific immunotherapy using SAgAs can successfully suppress EAE through co-delivery of autoantigen and peptides targeting with the B7 signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available