4.7 Article

Formulation and evaluation of pH-sensitive rutin nanospheres against colon carcinoma using HCT-116 cell line

Journal

JOURNAL OF ADVANCED RESEARCH
Volume 9, Issue -, Pages 17-26

Publisher

ELSEVIER
DOI: 10.1016/j.jare.2017.10.003

Keywords

Rutin; pH sensitive nanospheres; Colon targeting; Cytotoxicity; Anti-cancer; HCT-116 cell line

Funding

  1. Project's Sector at the National Research Centre, Cairo, Egypt [11010303]

Ask authors/readers for more resources

The objective of this study was to target rutin, in a more solubilized form, to the colon aiming at treatment of colon carcinoma. pH sensitive nanospheres were prepared by the nanoprecipitation technique employing Eudragit S100. Different drug: polymer ratios as well as different concentrations of the stabilizer Poloxamer-188 were used. The developed rutin nanospheres exhibited entrapment efficiency ranging from 94.19% to 98.1%, with a zeta potential values <-20 mV. They were spherical in shape and their sizes were in the nanometric dimensions. The in vitro release study of nanospheres formulations revealed enhancement of aqueous solubility of rutin and indicated drug targeting to the colon. The selected formulations were stable after storage for 6 months at ambient room and refrigeration temperatures. In vitro cytotoxic study was conducted on human colon cancer (HCT-116) as well as normal human fibroblasts (BHK) cell lines, employing Sulphorhodamine-B assay. Rutin nanospheres showed significantly (P = .001) higher area under inhibition percentage curve, when compared to free drug, revealing more than 2-fold increase in rutin cytotoxic activity. These results reveal that Eudragit S100 nanospheres could be a potential drug delivery system to the colon with enhanced solubility and hence improved the cytotoxic activity of rutin. (C) 2017 Production and hosting by Elsevier B.V. on behalf of Cairo University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available