4.7 Article

Strain rate-induced plasticity in bcc beta-Ti alloy single crystal micropillars containing brittle omega-precipitates

Journal

MATERIALS & DESIGN
Volume 137, Issue -, Pages 404-413

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2017.10.036

Keywords

Ti alloy micropillars; Omega-precipitates; Strain rate; Plasticity; Deformation band; Dislocations

Funding

  1. National Natural Science Foundation of China [51301127, 51321003, 51402363]
  2. 973 Program of China [2014CB644002, 2014CB644003]
  3. 111 Project of China [B06025]
  4. Natural Science Basic Research Plan in Shaanxi Province of China [2014JQ6205]
  5. Fundamental Research Funds for Central Universities of China [xjj2014126]

Ask authors/readers for more resources

Brittle omega-precipitates in bcc beta-Ti alloys are well known to dramatically degrade material plasticity and even trigger macroscopic premature fracture, posing an obstacle for structural applications. The embrittlementmechanism is intimately related to dislocation pile-up at the omega/beta interface that leads to stress concentration and undesirable failure. The underlying physics of improving ductility remains to be further uncovered. Herewe report a new finding in beta-Ti alloy single crystal micropillar compression that the plasticity can be substantially improved bymeans of increasing strain rate, while mechanical strength simultaneously exhibits striking faster is stronger fashion. The results reveal that the improvement of micropillar plasticity upon higher loading rate can be ascribed to the wider deformation band, in contrast to equivalents under quasi-static mode. The microscopic examination shows that cross slip induced by screw dislocations governs the plasticity improvement, which is further validated by crystallographic analysis and first principle energy landscape calculations. This dynamic self-toughening behavior advances our fundamental understanding to the plastic deformation mechanism of omega-precipitate contained bcc beta-Ti alloys. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available