4.7 Article

Accelerated multi-gravitational search algorithm for size optimization of truss structures

Journal

SWARM AND EVOLUTIONARY COMPUTATION
Volume 38, Issue -, Pages 109-119

Publisher

ELSEVIER
DOI: 10.1016/j.swevo.2017.07.001

Keywords

Size optimization; Truss structures; Gravitational search algorithm; Simplex crossover; Breeder genetic algorithm

Ask authors/readers for more resources

Weak local exploitation capability of the gravitational search algorithm (GSA) and its slow convergence rate in final iterations have been demonstrated in the literature. This paper presents a modified GSA denoted here as the accelerated multi-gravitational search algorithm (AMGSA) that exhibits an improved convergence rate. In AMGSA, the simplex crossover (SPX) and the operator mutation of the breeder genetic algorithm (BGA) are incorporated with the multi-gravitational search algorithm (MGSA) to achieve an algorithm with a good exploration-exploitation balance. MGSA is adopted to prevent stagnation of the search into a local optimum (i.e. to improve the exploration capability), while the SPX and the BGA mutation operator are used to bias the search toward promising areas of the search space (i.e. to promote local exploitation). The performance of AMGSA is evaluated using several benchmark truss optimization examples. Results indicate that AMGSA not only exhibits an improved balance between the exploration and exploitation schemes but also shows competitive promise in effectively and efficiently solving large-scale optimization problems as it requires a significantly lower number of structural analyses compared to other algorithms that it is checked against.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available